श्रीनिवास रामानुजन्

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
श्रीनिवास रामानुजन्

श्रीनिवास रामानुजन् (1887-1920)
जन्म 22 दिसम्बर, 1887
इरोड, तमिल नाडु
मृत्यु 26 अप्रैल, 1920
चेटपट, (चेन्नई), तमिल नाडु
आवास Flag of India.svg भारत, Flag of the United Kingdom.svg यूनाइटेड किंगडम
राष्ट्रीयता Flag of India.svg भारतीय
क्षेत्र गणित
शिक्षा कैम्ब्रिज विश्वविद्यालय
डॉक्टरी सलाहकार गॉडफ्रे हेरॉल्ड हार्डी और जॉन इडेन्सर लिटलवुड
प्रसिद्धि

लैंडॉ-रामानुजन् स्थिरांक
रामानुजन्-सोल्डनर स्थिरांक
रामानुजन् थीटा फलन
रॉजर्स-रामानुजन् तत्समक
रामानुजन् अभाज्य
कृत्रिम थीटा फलन

रामानुजन् योग

स्क्रिप्ट त्रुटि: "check for unknown parameters" ऐसा कोई मॉड्यूल नहीं है।

श्रीनिवास रामानुजन् इयंगर (तमिल ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார்) (22 दिसम्बर 1887 – 26 अप्रैल 1920) एक महान भारतीय गणितज्ञ थे।[१][२] इन्हें आधुनिक काल के महानतम् गणित विचारकों में गिना जाता है। इन्हें गणित में कोई विशेष प्रशिक्षण नहीं मिला, फिर भी इन्होंने विश्लेषण एवं संख्या सिद्धांत के क्षेत्रों में गहन योगदान दिए। इन्होंने अपने प्रतिभा और लगन से न केवल गणित के क्षेत्र में अद्भुत अविष्कार किए वरन भारत को अतुलनीय गौरव भी प्रदान किया।

ये बचपन से ही विलक्षण प्रतिभावान थे।[३] इन्होंने खुद से गणित सीखा और अपने जीवनभर में गणित के 3,884 प्रमेयों का संकलन किया। इनमें से अधिकांश प्रमेय सही सिद्ध किये जा चुके हैं। इन्होंने गणित के सहज ज्ञान और बीजगणित प्रकलन की अद्वितीय प्रतिभा के बल पर बहुत से मौलिक और अपारम्परिक परिणाम निकाले जिनसे प्रेरित शोध आज तक हो रहा है, यद्यपि इनकी कुछ खोजों को गणित मुख्यधारा में अब तक नहीं अपनाया गया है। हाल में इनके सूत्रों को क्रिस्टल-विज्ञान में प्रयुक्त किया गया है। इनके कार्य से प्रभावित गणित के क्षेत्रों में हो रहे काम के लिये रामानुजन जर्नल की स्थापना की गई है।

आरंभिक जीवनकाल

रामानुजन का जन्म 22 दिसम्बर 1887 को भारत के दक्षिणी भूभाग में स्थित कोयम्बटूर के ईरोड नामके गांव में हुआ था। वह पारम्परिक ब्राह्मण परिवार में जन्मे थे। इनकी की माता का नाम कोमलताम्मल और इनके पिता का नाम श्रीनिवास अय्यंगर था। इनका बचपन मुख्यतः कुंभकोणम में बीता था जो कि अपने प्राचीन मंदिरों के लिए जाना जाता है। बचपन में रामानुजन का बौद्धिक विकास सामान्य बालकों जैसा नहीं था। यह तीन वर्ष की आयु तक बोलना भी नहीं सीख पाए थे। जब इतनी बड़ी आयु तक जब रामानुजन ने बोलना आरंभ नहीं किया तो सबको चिंता हुई कि कहीं यह गूंगे तो नहीं हैं। बाद के वर्षों में जब उन्होंने विद्यालय में प्रवेश लिया तो भी पारम्परिक शिक्षा में इनका कभी भी मन नहीं लगा। रामानुजन ने दस वर्षों की आयु में प्राइमरी परीक्षा में पूरे जिले में सबसे अधिक अङ्क प्राप्त किया और आगे की शिक्षा के लिए टाउन हाईस्कूल पहुंचे। रामानुजन को प्रश्न पूछना बहुत पसंद था। उनके प्रश्न अध्यापकों को कभी-कभी बहुत अटपटे लगते थे। जैसे कि-संसार में पहला पुरुष कौन था? पृथ्वी और बादलों के बीच की दूरी कितनी होती है? रामानुजन का व्यवहार बड़ा ही मधुर था। इनका सामान्य से कुछ अधिक स्थूल शरीर और जिज्ञासा से चमकती आखें इन्हें एक अलग ही पहचान देती थीं। इनके सहपाठियों के अनुसार इनका व्यवहार इतना सौम्य था कि कोई इनसे नाराज हो ही नहीं सकता था। विद्यालय में इनकी प्रतिभा ने दूसरे विद्यार्थियों और शिक्षकों पर छाप छोड़ना आरंभ कर दिया। इन्होंने स्कूल के समय में ही कालेज के स्तर के गणित को पढ़ लिया था। एक बार इनके विद्यालय के प्रधानाध्यापक ने यह भी कहा था कि विद्यालय में होने वाली परीक्षाओं के मापदंड रामानुजन के लिए लागू नहीं होते हैं। हाईस्कूल की परीक्षा उत्तीर्ण करने के बाद इन्हें गणित और अंग्रेजी मे अच्छे अंक लाने के कारण सुब्रमण्यम छात्रवृत्ति मिली और आगे कालेज की शिक्षा के लिए प्रवेश भी मिला।
आगे एक परेशानी आई। रामानुजन का गणित के प्रति प्रेम इतना बढ़ गया था कि वे दूसरे विषयों पर ध्यान ही नहीं देते थे। यहां तक की वे इतिहास, जीव विज्ञान की कक्षाओं में भी गणित के प्रश्नों को हल किया करते थे। नतीजा यह हुआ कि ग्यारहवीं कक्षा की परीक्षा में वे गणित को छोड़ कर बाकी सभी विषयों में फेल हो गए और परिणामस्वरूप उनको छात्रवृत्ति मिलनी बंद हो गई। एक तो घर की आर्थिक स्थिति खराब और ऊपर से छात्रवृत्ति भी नहीं मिल रही थी। रामानुजन के लिए यह बड़ा ही कठिन समय था। घर की स्थिति सुधारने के लिए इन्होने गणित के कुछ ट्यूशन तथा खाते-बही का काम भी किया। कुछ समय बाद 1907 में रामानुजन ने फिर से बारहवीं कक्षा की प्राइवेट परीक्षा दी और अनुत्तीर्ण हो गए। और इसी के साथ इनके पारंपरिक शिक्षा की इतिश्री हो गई।

रामानुजन का पैत्रिक आवास

औपचारिक शिक्षा की समाप्ति और संघर्ष का समय

विद्यालय छोड़ने के बाद का पांच वर्षों का समय इनके लिए बहुत हताशा भरा था। भारत इस समय परतंत्रता की बेड़ियों में जकड़ा था। चारों तरफ भयंकर गरीबी थी। ऐसे समय में रामानुजन के पास न कोई नौकरी थी और न ही किसी संस्थान अथवा प्रोफेसर के साथ काम करने का मौका। बस उनका ईश्वर पर अटूट विश्वास और गणित के प्रति अगाध श्रद्धा ने उन्हें कर्तव्य मार्ग पर चलने के लिए सदैव प्रेरित किया। नामगिरी देवी रामानुजन के परिवार की ईष्ट देवी थीं। उनके प्रति अटूट विश्वास ने उन्हें कहीं रुकने नहीं दिया और वे इतनी विपरीत परिस्थितियों में भी गणित के अपने शोध को चलाते रहे। इस समय रामानुजन को ट्यूशन से कुल पांच रूपये मासिक मिलते थे और इसी में गुजारा होता था। रामानुजन का यह जीवन काल बहुत कष्ट और दुःख से भरा था। इन्हें हमेशा अपने भरण-पोषण के लिए और अपनी शिक्षा को जारी रखने के लिए इधर उधर भटकना पड़ा और अनेक लोगों से असफल याचना भी करनी पड़ी।

विवाह और गणित साधना

वर्ष 1908 में इनके माता पिता ने इनका विवाह जानकी नामक कन्या से कर दिया।[४] विवाह हो जाने के बाद अब इनके लिए सब कुछ भूल कर गणित में डूबना संभव नहीं था। अतः वे नौकरी की तलाश में मद्रास आए। बारहवीं की परीक्षा उत्तीर्ण न होने की वजह से इन्हें नौकरी नहीं मिली और उनका स्वास्थ्य भी बुरी तरह गिर गया। अब डॉक्टर की सलाह पर इन्हें वापस अपने घर कुंभकोणम लौटना पड़ा। बीमारी से ठीक होने के बाद वे वापस मद्रास आए और फिर से नौकरी की तलाश शुरू कर दी। ये जब भी किसी से मिलते थे तो उसे अपना एक रजिस्टर दिखाते थे। इस रजिस्टर में इनके द्वारा गणित में किए गए सारे कार्य होते थे। इसी समय किसी के कहने पर रामानुजन वहां के डिप्टी कलेक्टर श्री वी. रामास्वामी अय्यर से मिले। अय्यर गणित के बहुत बड़े विद्वान थे। यहां पर श्री अय्यर ने रामानुजन की प्रतिभा को पहचाना और जिलाधिकारी श्री रामचंद्र राव से कह कर इनके लिए 25 रूपये मासिक छात्रवृत्ति का प्रबंध भी कर दिया। इस वृत्ति पर रामानुजन ने मद्रास में एक साल रहते हुए अपना प्रथम शोधपत्र प्रकाशित किया। शोध पत्र का शीर्षक था "बरनौली संख्याओं के कुछ गुण” और यह शोध पत्र जर्नल ऑफ इंडियन मैथेमेटिकल सोसाइटी में प्रकाशित हुआ था। यहां एक साल पूरा होने पर इन्होने मद्रास पोर्ट ट्रस्ट में क्लर्क की नौकरी की। सौभाग्य से इस नौकरी में काम का बोझ कुछ ज्यादा नहीं था और यहां इन्हें अपने गणित के लिए पर्याप्त समय मिलता था। यहां पर रामानुजन रात भर जाग कर नए-नए गणित के सूत्र लिखा करते थे और फिर थोड़ी देर तक आराम कर के फिर दफ्तर के लिए निकल जाते थे। रामानुजन गणित के शोधों को स्लेट पर लिखते थे। और बाद में उसे एक रजिस्टर में लिख लेते थे। रात को रामानुजन के स्लेट और खड़िए की आवाज के कारण परिवार के अन्य सदस्यों की नींद चौपट हो जाती थी।

प्रोफेसर हार्डी के साथ पत्रव्यावहार

इस समय भारतीय और पश्चिमी रहन सहन में एक बड़ी दूरी थी और इस वजह से सामान्यतः भारतीयों को अंग्रेज वैज्ञानिकों के सामने अपने बातों को प्रस्तुत करने में काफी संकोच होता था। इधर स्थिति कुछ ऐसी थी कि बिना किसी अंग्रेज गणितज्ञ की सहायता लिए शोध कार्य को आगे नहीं बढ़ाया जा सकता था। इस समय रामानुजन के पुराने शुभचिंतक इनके काम आए और इन लोगों ने रामानुजन द्वारा किए गए कार्यों को लंदन के प्रसिद्ध गणितज्ञों के पास भेजा। पर यहां इन्हें कुछ विशेष सहायता नहीं मिली लेकिन एक लाभ यह हुआ कि लोग रामानुजन को थोड़ा बहुत जानने लगे थे। इसी समय रामानुजन ने अपने संख्या सिद्धांत के कुछ सूत्र प्रोफेसर शेषू अय्यर को दिखाए तो उनका ध्यान लंदन के ही प्रोफेसर हार्डी की तरफ गया। प्रोफेसर हार्डी उस समय के विश्व के प्रसिद्ध गणितज्ञों में से एक थे। और अपने सख्त स्वभाव और अनुशासन प्रियता के कारण जाने जाते थे। प्रोफेसर हार्डी के शोधकार्य को पढ़ने के बाद रामानुजन ने बताया कि उन्होने प्रोफेसर हार्डी के अनुत्तरित प्रश्न का उत्तर खोज निकाला है। अब रामानुजन का प्रोफेसर हार्डी से पत्रव्यवहार आरंभ हुआ। अब यहां से रामानुजन के जीवन में एक नए युग का सूत्रपात हुआ जिसमें प्रोफेसर हार्डी की बहुत बड़ी भूमिका थी। दूसरे शब्दों में कहा जाए तो जिस तरह से एक जौहरी हीरे की पहचान करता है और उसे तराश कर चमका देता है, रामानुजन के जीवन में वैसा ही कुछ स्थान प्रोफेसर हार्डी का है। प्रोफेसर हार्डी आजीवन रामानुजन की प्रतिभा और जीवन दर्शन के प्रशंसक रहे। रामानुजन और प्रोफेसर हार्डी की यह मित्रता दोनो ही के लिए लाभप्रद सिद्ध हुई। एक तरह से देखा जाए तो दोनो ने एक दूसरे के लिए पूरक का काम किया। प्रोफेसर हार्डी ने उस समय के विभिन्न प्रतिभाशाली व्यक्तियों को 100 के पैमाने पर आंका था। अधिकांश गणितज्ञों को उन्होने 100 में 35 अंक दिए और कुछ विशिष्ट व्यक्तियों को 60 अंक दिए। लेकिन उन्होंने रामानुजन को 100 में पूरे 100 अंक दिए थे।

आरंभ में रामानुजन ने जब अपने किए गए शोधकार्य को प्रोफेसर हार्डी के पास भेजा तो पहले उन्हें भी पूरा समझ में नहीं आया। जब उन्होंने अपने मित्र गणितज्ञों से सलाह ली तो वे इस निष्कर्ष पर पहुंचे कि रामानुजन गणित के क्षेत्र में एक दुर्लभ व्यक्तित्व है और इनके द्वारा किए गए कार्य को ठीक से समझने और उसमें आगे शोध के लिए उन्हें इंग्लैंड आना चाहिए। अतः उन्होने रामानुजन को कैंब्रिज आने के लिए आमंत्रित किया।

विदेश गमन

कुछ व्यक्तिगत कारणों और धन की कमी के कारण रामानुजन ने प्रोफेसर हार्डी के कैंब्रिज के आमंत्रण को अस्वीकार कर दिया। प्रोफेसर हार्डी को इससे निराशा हुई लेकिन उन्होनें किसी भी तरह से रामानुजन को वहां बुलाने का निश्चय किया। इसी समय रामानुजन को मद्रास विश्वविद्यालय में शोध वृत्ति मिल गई थी जिससे उनका जीवन कुछ सरल हो गया और उनको शोधकार्य के लिए पूरा समय भी मिलने लगा था। इसी बीच एक लंबे पत्रव्यवहार के बाद धीरे-धीरे प्रोफेसर हार्डी ने रामानुजन को कैंब्रिज आने के लिए सहमत कर लिया। प्रोफेसर हार्डी के प्रयासों से रामानुजन को कैंब्रिज जाने के लिए आर्थिक सहायता भी मिल गई। रामानुजन ने इंग्लैण्ड जाने के पहले गणित के करीब 3000 से भी अधिक नये सूत्रों को अपनी नोटबुक में लिखा था।

रामानुजन ने लंदन की धरती पर कदम रखा। वहां प्रोफेसर हार्डी ने उनके लिए पहले से व्ववस्था की हुई थी अतः इन्हें कोई विशेष परेशानी नहीं हुई। इंग्लैण्ड में रामानुजन को बस थोड़ी परेशानी थी और इसका कारण था उनका शर्मीला, शांत स्वभाव और शुद्ध सात्विक जीवनचर्या। अपने पूरे इंग्लैण्ड प्रवास में वे अधिकांशतः अपना भोजन स्वयं बनाते थे। इंग्लैण्ड की इस यात्रा से उनके जीवन में क्रांतिकारी परिवर्तन आया। उन्होंने प्रोफेसर हार्डी के साथ मिल कर उच्चकोटि के शोधपत्र प्रकाशित किए। अपने एक विशेष शोध के कारण इन्हें कैंब्रिज विश्वविद्यालय द्वारा बी.ए. की उपाधि भी मिली। लेकिन वहां की जलवायु और रहन-सहन की शैली उनके अधिक अनुकूल नहीं थी और उनका स्वास्थ्य खराब रहने लगा। डॉक्टरों ने इसे क्षय रोग बताया। उस समय क्षय रोग की कोई दवा नहीं होती थी और रोगी को सेनेटोरियम मे रहना पड़ता था। रामानुजन को भी कुछ दिनों तक वहां रहना पड़ा। वहां इस समय भी यह गणित के सूत्रों में नई नई कल्पनाएं किया करते थे।

रॉयल सोसाइटी की सदस्यता

इसके बाद वहां रामानुजन को रॉयल सोसाइटी का फेलो नामित किया गया। ऐसे समय में जब भारत गुलामी में जी रहा था तब एक अश्वेत व्यक्ति को रॉयल सोसाइटी की सदस्यता मिलना एक बहुत बड़ी बात थी। रॉयल सोसाइटी के पूरे इतिहास में इनसे कम आयु का कोई सदस्य आज तक नहीं हुआ है। पूरे भारत में उनके शुभचिंतकों ने उत्सव मनाया और सभाएं की। रॉयल सोसाइटी की सदस्यता के बाद यह ट्रिनीटी कॉलेज की फेलोशिप पाने वाले पहले भारतीय भी बने। अब ऐसा लग रहा था कि सब कुछ बहुत अच्छी जगह पर जा रहा है। लेकिन रामानुजन का स्वास्थ्य गिरता जा रहा था और अंत में डॉक्टरों की सलाह पर उन्हें वापस भारत लौटना पड़ा। भारत आने पर इन्हें मद्रास विश्वविद्यालय में प्राध्यापक की नौकरी मिल गई। और रामानुजन अध्यापन और शोध कार्य में पुनः रम गए।

स्वदेश आगमन

भारत लौटने पर भी स्वास्थ्य ने इनका साथ नहीं दिया और हालत गंभीर होती जा रही थी। इस बीमारी की दशा में भी इन्होने मॉक थीटा फंक्शन पर एक उच्च स्तरीय शोधपत्र लिखा। रामानुजन द्वारा प्रतिपादित इस फलन का उपयोग गणित ही नहीं बल्कि चिकित्साविज्ञान में कैंसर को समझने के लिए भी किया जाता है।

मृत्यु

इनका गिरता स्वास्थ्य सबके लिए चिंता का विषय बन गया और यहां तक की अब डॉक्टरों ने भीजवाब दे दिया था। अंत में रामानुजन के विदा की घड़ी आ ही गई। 26 अप्रैल1920 के प्रातः काल में वे अचेत हो गए और दोपहर होते होते उन्होने प्राण त्याग दिए। इस समय रामानुजन की आयु मात्र 33 वर्ष थी। इनका असमय निधन गणित जगत के लिए अपूरणीय क्षति था। पूरे देश विदेश में जिसने भी रामानुजन की मृत्यु का समाचार सुना वहीं स्तब्ध हो गया।

रामानुजन की कार्यशैली और शोध

रामानुजन और इनके द्वारा किए गए अधिकांश कार्य अभी भी वैज्ञानिकों के लिए अबूझ पहेली बने हुए हैं। एक बहुत ही सामान्य परिवार में जन्म ले कर पूरे विश्व को आश्चर्यचकित करने की अपनी इस यात्रा में इन्होने भारत को अपूर्व गौरव प्रदान किया। इनका उनका वह पुराना रजिस्टर जिस पर वे अपने प्रमेय और सूत्रों को लिखा करते थे 1976 में अचानक ट्रिनीटी कॉलेज के पुस्तकालय में मिला। करीब एक सौ पन्नों का यह रजिस्टर आज भी वैज्ञानिकों के लिए एक पहेली बना हुआ है। इस रजिस्टर को बाद में रामानुजन की नोट बुक के नाम से जाना गया। मुंबई के टाटा मूलभूत अनुसंधान संस्थान द्वारा इसका प्रकाशन भी किया गया है। रामानुजन के शोधों की तरह उनके गणित में काम करने की शैली भी विचित्र थी। वे कभी कभी आधी रात को सोते से जाग कर स्लेट पर गणित से सूत्र लिखने लगते थे और फिर सो जाते थे। इस तरह ऐसा लगता था कि वे सपने में भी गणित के प्रश्न हल कर रहे हों। रामानुजन के नाम के साथ ही उनकी कुलदेवी का भी नाम लिया जाता है। इन्होने शून्य और अनन्त को हमेशा ध्यान में रखा और इसके अंतर्सम्बन्धों को समझाने के लिए गणित के सूत्रों का सहारा लिया। रामानुजन के कार्य करने की एक विशेषता थी। पहले वे गणित का कोई नया सूत्र या प्रमेंय पहले लिख देते थे लेकिन उसकी उपपत्ति पर उतना ध्यान नहीं देते थे। इसके बारे में पूछे जाने पर वे कहते थे कि यह सूत्र उन्हें नामगिरी देवी की कृपा से प्राप्त हुए हैं। रामानुजन का आध्यात्म के प्रति विश्वास इतना गहरा था कि वे अपने गणित के क्षेत्र में किये गए किसी भी कार्य को आध्यात्म का ही एक अंग मानते थे। वे धर्म और आध्यात्म में केवल विश्वास ही नहीं रखते थे बल्कि उसे तार्किक रूप से प्रस्तुत भी करते थे। वे कहते थे कि "मेरे लिए गणित के उस सूत्र का कोई मतलब नहीं है जिससे मुझे आध्यात्मिक विचार न मिलते हों।”

गणितीय कार्य एवं उपलब्धियाँ

रामानुजन ने इंग्लैण्ड में पाँच वर्षों तक मुख्यतः संख्या सिद्धान्त के क्षेत्र में काम किया।

सूत्र

रामानुजन् ने निम्नलिखित सूत्र प्रतिपादित किया-

<math> 1+\frac{1}{1\cdot 3} + \frac{1}{1\cdot 3\cdot 5} + \frac{1}{1\cdot 3\cdot 5\cdot 7} + \frac{1}{1\cdot 3\cdot 5\cdot 7\cdot 9} + \cdots + {{1\over 1 + {1\over 1 + {2\over 1 + {3\over 1 + {4\over 1 + {5\over 1 + \cdots }}}}}}} = \sqrt{\frac{e\cdot\pi}{2}}</math>

इस सूत्र की विशेषता यह है कि यह गणित के दो सबसे प्रसिद्ध नियतांकों ('पाई' तथा 'ई') का सम्बन्ध एक अनन्त सतत भिन्न के माध्यम से व्यक्त करता है।

पाई के लिये उन्होने एक दूसरा सूत्र भी (सन् १९१० में) दिया था-

<math> \pi = \frac{9801}{2\sqrt{2} \displaystyle\sum^\infty_{n=0} \frac{(4n)!}{(n!)^4} \times \frac{[1103 + 26390n]}{(4 \times 99)^{4n}}}</math>

रामानुजन संख्याएँ

'रामानुजन संख्या' उस प्राकृतिक संख्या को कहते हैं जिसे दो अलग-अलग प्रकार से दो संख्याओं के घनों के योग द्वारा निरूपित किया जा सकता है।

उदाहरण - <math>9^3 + 10^3 = 1^3 + 12^3 = 1729</math>.

इसी प्रकार,

  • <math>2^3 + 16^3 = 9^3 + 15^3 = 4 104</math>
  • <math>10^3 + 27^3 = 19^3 + 24^3 = 20 683</math>
  • <math>2^3+ 34^3 = 15^3 + 33^3 = 39 312</math>
  • <math>9^3 + 34^3 = 16^3 + 33^3 = 40 033</math>

अतः 1729, 4104, 20683, 39312, 40033 आदि रामानुजन संख्याएं हैं।

रामानुजन अटकल (Ramanujan conjecture)

स्क्रिप्ट त्रुटि: "main" ऐसा कोई मॉड्यूल नहीं है।

इन्हें भी देखें

सन्दर्भ

साँचा:reflist

बाहरी कड़ियाँ

  1. स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
  2. साँचा:cite web
  3. स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
  4. साँचा:cite web