पुनरावृत्त फलन

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

गणित में, पुनरावृत्त फलन X → X में परिभाषित (एक ऐसा फलन जो समुच्चय X से इसमें ही परिभाषित हो) फलन है जो इसी समुच्चय में अन्य फलन f : X → X को निश्चित संख्या में पुनरावृत्तियों से प्राप्त किया जाता है। प्रक्रिया के समान फलन के बार बार पुनरावृत्ति होने के कारण इसे पुनरावृत्ति फलन कहते हैं। इस प्रक्रिया को किसी निश्चित संख्या से आरम्भ किया जाता है और बाद में प्राप्त मान को फलन में निविष्ट करके तथा इस प्रक्रिया की पुनरावृत्ति करके परिणाम प्राप्त किया जाता है।

पुनरावृत्त फलनों का अध्ययन कम्प्यूटर विज्ञान, भग्न, गतिकीय तन्त्र, गणित और पुनः प्रसामान्यीकरण समूह भौतिकी में किया जाता है।

परिभाषा

किसी समुच्चय X पर पुनरावृत्त फलन की परिभाषा निम्न प्रकार दी जाती है।

माना X एक समुच्चय है और <math>f: X \to X</math> एक फलन है।

तब धनात्मक पूर्णांक n के लिए <math>f</math> पर पुनरावृत्ति फलन <math>f^n</math> निम्न प्रकार परिभाषित किया जाता है:

<math>f^0 ~ \stackrel{\mathrm{def}}{=} ~ \operatorname{id}_X\,</math>

और

<math>f^{n+1} ~ \stackrel{\mathrm{def}}{=} ~ f \circ f^{n},\,</math>

जहाँ <math>id_X</math>, X पर तत्समक फलन है और fg फलन निर्माण को निरुपित करता है। अर्थात

(fg)(x) = f (g(x)),

हमेशा साहचर्य होगा।

क्रमविनिमय गुणधर्म और पुनरावृत्ति अनुक्रम

सामान्य रूप में, निम्नलिखित तत्समकता सभी धनात्मक पूर्णांकों m और n के लिए संतुष्ट होती है,

<math>f^{m} \circ f^{n} = f^{n} \circ f^{m} = f^{m+n}~.\,</math>

यह सरंचनात्मक रूप से चरघातांकी रूप aman = am+n के समरूप है और विशिष्ट अवस्था f(x)=ax है।

व्यापक रूप में स्वैच्छिक सामान्य (ऋणात्मक और अपूर्णांक, आदि) सूचकांक m और n के लिए इस फलन को स्थानान्तरण फलनीय समीकरण कहते हैं।

सम्बन्ध (f m )n(x) = (f n )m(x) = f mn(x) भी चरघातांकी रूप (am )n =(an )m = amn के समान लागू होता है।

फलनों के अनुक्रम f n को पिकार्ड अनुक्रम कहा जाता है।[१][२]

सन्दर्भ