गणितीय नियतांक
गणितीय नियतांक (mathematical constant) वह संख्या (प्राय: वास्तविक संख्या) है जो गणित में स्वभावत: उत्पन्न होती हैं। उदाहरण - पाई (π), आयलर संख्या ई (e) आदि।
नियतांक एवं श्रेणियाँ
—तालिका संरचना--
- मान : नियतांक का संख्यात्मक मान
- लैटेक्स (LaTeX): TeX प्रारूप में सूत्र या श्रेणी
- सूत्र: मैथमैटिका (Mathematica) या वुल्फ्रैम अल्फा (Wolfram Alpha) आदि में प्रयोग के लिए
- OEIS: On-Line Encyclopedia of Integer Sequences
- सतत भिन्न: सरल प्रारूप [to integer; frac1, frac2, frac3, ...] में। (यदि आवर्ती हो तो कोष्टक में)
- Nº:
- R - परिमेय संख्या
- I - अपरिमेय संख्या
- T - प्रागनुभविक संख्या (Transcendental number)
- C - समिश्र संख्या
इस सूची के 'मान', 'नाम', 'OEIS' आदि पर क्लिक करके इस सूची को आवश्यकतानुसार क्रमित (ordered) कर सकते हैं।
मान | नाम | संकेत | LaTeX | सूत्र | Nº | OEIS | सतत भिन्न |
---|---|---|---|---|---|---|---|
3.62560990822190831193068515586767200 | गामा (1/4)[१] | <math>\Gamma(\tfrac14)</math> | <math> 4 \left(\frac{1}{4}\right)! = \left(-\frac{3}{4}\right)! </math> | 4(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] |
0.95531661812450927816385710251575775 | जादुई कोण (Magic angle)[२] | <math> {\theta_m} </math> | <math> \arctan \left(\sqrt{2}\right) = \arccos \left(\sqrt{\tfrac13}\right) \approx \textstyle {54.7356} ^{ \circ } </math> | arctan(sqrt(2)) | I | A195696 | [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] |
1.44466786100976613365833910859643022 | Steiner number, Iterated Exponential Constant[३] | <math>{e}^{\frac{1}{e}}</math> | <math>e^{\frac{1}{e}}\color{white}...........\color{black}</math> = Upper Limit of Tetration | e^(1/e) | T | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] |
0.69220062755534635386542199718278976 | Minimum value of función ƒ(x) = xx[४] |
<math> {\left(\frac{1}{e}\right)}^\frac{1}{e}</math> | <math>{e}^{-\frac{1}{e}} \color{white}..........\color{black}</math> = Inverse Steiner Number | e^(-1/e) | T | A072364 | [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] |
0.34053732955099914282627318443290289 | Pólya Random Walk constant[५] | <math>{p(3)}</math> | <math> 1- \!\!\left({3\over(2\pi)^3}\int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} {dx\,dy\,dz\over 3-\!\cos x-\!\cos y-\!\cos z}\right)^{\!-1}</math>
<math> = 1- 16\sqrt{\tfrac23}\;\pi^3 \left(\Gamma(\tfrac{1}{24})\Gamma(\tfrac{5}{24})\Gamma(\tfrac{7}{24})\Gamma(\tfrac{11}{24})\right)^{-1}</math> |
1-16*Sqrt[2/3]*Pi^3 /((Gamma[1/24] *Gamma[5/24] *Gamma[7/24] *Gamma[11/24]) |
T | A086230 | [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] |
0.54325896534297670695272829530061323 | Bloch-Landau constant[६] | <math>{L}</math> | <math> = \frac {\Gamma(\tfrac13)\;\Gamma(\tfrac{5}{6})} {\Gamma(\tfrac{1}{6})} = \frac {(-\tfrac23)!\;(-1+\tfrac56)!} {(-1+\tfrac16)!}</math> | gamma(1/3) *gamma(5/6) /gamma(1/6) |
T | A081760 | [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] |
0.18785964246206712024851793405427323 | MRB Constant, Marvin Ray Burns[७][८][९] | <math> C_{{}_{MRB}}</math> | <math> \sum_{n=1}^{\infty} ({-}1)^n (n^{1/n}{-}1) = - \sqrt[1]{1} + \sqrt[2]{2} - \sqrt[3]{3} + \sqrt[4]{4}\,... </math> | Sum[n=1 to ∞] {(-1)^n (n^(1/n)-1)} |
T | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] |
0.74759792025341143517873094383017817 | Rényi's Parking Constant[१०] | <math>{m}</math> | <math> \int \limits_{0}^{\infty} exp \left(\! -2 \int \limits_{0}^{x} \frac {1-e^{-y}}{y} dy\right)\! dx = {e^{-2 \gamma}} \int \limits_{0}^{\infty} \frac{e^{-2 \Gamma(0,n)}}{n^2} </math> | [e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2 *Gamma(0,n)) /n^2] |
T | A050996 | [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] |
1.27323954473516268615107010698011489 | रामानुजन-फोर्सिथ श्रेणी[११] | <math>\frac {4}{\pi}</math> | <math> \displaystyle \sum \limits_{n=0}^{\infty} \textstyle \left(\frac{(2n-3)!!}{(2n)!!}\right)^{2} = {1 \! + \! \left(\frac {1}{2} \right)^2 \! {+} \left(\frac {1}{2 \cdot 4} \right)^2 \! {+} \left(\frac {1 \cdot 3}{2 \cdot 4 \cdot 6} \right)^2 {+} ...}</math> | Sum[n=0 to ∞] {[(2n-3)!! /(2n)!!]^2} |
T | A088538 | [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] |
1.46707807943397547289779848470722995 | Porter Constant[१२] | <math>{C}</math> | <math> \frac{6\ln 2}{\pi ^2} \left(3 \ln 2 + 4 \,\gamma -\frac{24}{\pi ^2} \,\zeta '(2)-2 \right)-\frac{1}{2}</math>
<math> \scriptstyle \gamma \, \text{= Euler–Mascheroni Constant = 0,5772156649...}</math> <math> \scriptstyle \zeta '(2) \,\text{= Derivative of }\zeta(2) \,= \, - \!\!\sum \limits_{n = 2}^{\infty} \frac{\ln n}{n^2} \,\text{= −0,9375482543...}</math> |
6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 | T | A086237 | [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] |
4.66920160910299067185320382046620161 | Feigenbaum constant δ[१३] | <math>{\delta}</math> | <math> \lim_{n \to \infty}\frac {x_{n+1}-x_n}{x_{n+2}-x_{n+1}} \qquad \scriptstyle x \in (3,8284;\, 3,8495)</math>
<math> \scriptstyle x_{n+1}=\,ax_n(1-x_n)\quad {or} \quad x_{n+1}=\,a\sin(x_n)</math> |
T | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | |
2.50290787509589282228390287321821578 | Feigenbaum constant α[१४] | <math>\alpha</math> | <math>\lim_{n \to \infty}\frac {d_n}{d_{n+1}}</math> | T | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | |
0.62432998854355087099293638310083724 | Golomb–Dickman constant[१५] | <math>{\lambda}</math> | <math>\int \limits_{0}^{\infty} \underset{Para \; x>2}{\frac{f(x)}{x^2} dx} = \int \limits_{0}^{1} e^{Li(n)} dn \quad \scriptstyle \text{Li: Logarithmic integral}</math> | N[Int{n,0,1}[e^Li(n)],34] | T | A084945 | [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] |
23.1406926327792690057290863679485474 | Gelfond constant[१६] | <math>{e}^{\pi}</math> | <math>\sum_{n=0}^\infty \frac{\pi^{n}}{n!} = \frac{\pi^{1}}{1} + \frac{\pi^{2}}{2!} + \frac{\pi^{3}}{3!} + \frac{\pi^{4}}{4!}+ \cdots</math> | Sum[n=0 to ∞] {(pi^n)/n!} |
T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] |
7.38905609893065022723042746057500781 | शंकु नियतांक (Conic constant), Schwarzschild constant[१७] | <math>e^2</math> | <math> \sum_{n = 0}^\infty \frac{2^n}{n!} = 1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+\frac{2^5}{5!}+...</math> | Sum[n=0 to ∞] {2^n/n!} |
T | A072334 | [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2, (1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc. |
0.35323637185499598454351655043268201 | Hafner-Sarnak-McCurley constant (1)[१८] | <math>{\sigma}</math> | <math> \prod_{k=1}^{\infty}\left\{1-[1-\prod_{j=1}^n \underset{p_{k}: \, {prime}}{(1-p_k^{-j})]^2}\right\}</math> | prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-ithprime(k)^-j})^2} | T | A085849 | [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] |
0.60792710185402662866327677925836583 | Hafner-Sarnak-McCurley constant (2)[१९] | <math>\frac{1}{\zeta(2)}</math> | <math> \frac{6}{\pi^2} {=} \prod_{n = 0}^\infty \underset{p_{n}: \, {prime}}{\left(1- \frac{1}{{p_n}^2}\right)}{=}\textstyle \left(1{-}\frac{1}{2^2}\right)\left(1{-}\frac{1}{3^2}\right)\left(1{-}\frac{1}{5^2}\right)...</math> | Prod{n=1 to ∞} (1-1/ithprime (n)^2) |
T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] |
1.58496250072115618145373894394781651 | Hausdorff dimension, Sierpinski triangle[२०] | <math>{log_2 3}</math> | <math>\frac {log 3}{log 2} = \frac{\sum_{n=0}^\infty \frac{1}{2^{2n+1}(2n+1)}}{\sum_{n=0}^\infty \frac{1}{3^{2n+1}(2n+1)}} = \frac{\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+...}{\frac{1}{3}+\frac{1}{81}+\frac{1}{1215}+...} </math> | (Sum[n=0 to ∞] {1/ (2^(2n+1) (2n+1))})/ (Sum[n=0 to ∞] {1/ (3^(2n+1) (2n+1))}) |
T | A020857 | [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] |
0.12345678910111213141516171819202123 | Champernowne constant[२१] | <math>C_{10}</math> | <math>\sum_{n=1}^\infty \; \sum_{k=10^{n-1}}^{10^n-1}\frac{k}{10^{kn-9\sum_{j=0}^{n-1}10^j(n-j-1)}}</math> | T | A033307 | [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] | |
0.76422365358922066299069873125009232 | Landau-Ramanujan constant[२२] | <math>K</math> | <math>\frac1{\sqrt2}\prod_{p\equiv3\!\!\!\!\!\mod \! 4}\!\! \underset{\!\!\!\!\!\!\!\! p: \, {prime}}{\left(1-\frac1{p^2}\right)^{-\frac{1}{2}}}\!\!=\frac\pi4\prod_{p\equiv1\!\!\!\!\!\mod \!4}\!\! \underset{\!\!\!\! p: \, {prime}}{\left(1-\frac1{p^2}\right)^\frac{1}{2}}</math> | T | A064533 | [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] | |
0.11000100000000000000000100... | Liouville number[२३] | <math>\text{£}_{Li}</math> | <math> \sum_{n=1}^\infty \frac{1}{10^{n!}} = \frac {1}{10^{1!}} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \frac{1}{10^{4!}} + ...</math> | Sum[n=1 to ∞] {10^(-n!)} |
T | A012245 | [1;9,1,999,10,9999999999999,1,9,999,1,9] |
1.9287800... | राइट नियतांक (Wright constant)[२४] | <math>{\omega}</math> | <math>\left \lfloor 2^{2^{2^{\cdot^{\cdot^{2^{\omega}}}}}} \!\right \rfloor \scriptstyle \text{= primes:} \displaystyle\left\lfloor 2^\omega\right\rfloor \scriptstyle \text{=3,}
\displaystyle\left\lfloor 2^{2^\omega} \right\rfloor \scriptstyle \text{=13,} \displaystyle \left\lfloor 2^{2^{2^\omega}} \right\rfloor \scriptstyle \text{=16381, ...}</math> |
A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | ||
2.71828182845904523536028747135266250 | Number e, Euler's number[२५] | <math>{e}</math> | <math>\lim_{n \to \infty}\!\left(1{+}\frac {1}{n}\right)^n \!\! {=} \! \sum_{n = 0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1} + \frac{1}{2!} + \frac{1}{3!} + ...</math> | Sum[n=0 to ∞] {1/n!} |
T | A001113 | [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;(1,2p,1)], p∈ℕ |
0.36787944117144232159552377016146086 | Reverse of Number e[२६] | <math>\frac{1}{e}</math> | <math>\sum_{n = 0}^\infty \frac{(-1)^n}{n!} = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} +...</math> | Sum[n=2 to ∞] {(-1)^n/n!} |
T | A068985 | [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1, (1,2p,1)], p∈ℕ |
0.6903471261... | Upper iterated exponential[२७] | <math> {H}_{2n+1} </math> | <math> \lim_{n \to \infty} {H}_{2n+1} =
\textstyle \left(\frac{1}{2}\right) ^{\left(\frac{1}{3}\right) ^{\left(\frac{1}{4}\right) ^{\cdot^{\cdot^{\left(\frac{1}{2n+1}\right)}}}}} = {2}^{-3^{-4^{\cdot^{\cdot^साँचा:-2n-1}}}} </math> |
2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12^-13 … |
T | [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,61,5,...] | |
0.6583655992... | Lower límit iterated exponential[२८] | <math> {H}_{2n} </math> | <math> \lim_{n \to \infty} {H}_{2n} =
\textstyle \left(\frac{1}{2}\right) ^{\left(\frac{1}{3}\right) ^{\left(\frac{1}{4}\right) ^{\cdot^{\cdot^{\left(\frac{1}{2n}\right)}}}}} = {2}^{-3^{-4^{\cdot^{\cdot^साँचा:-2n}}}} </math> |
2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12 … |
T | [0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] | |
0.63661977236758134307553505349005745 | 2/Pi, François Viète product[२९] | <math>\frac{2}{\pi}</math> | <math> \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdots</math> | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | |
3.14159265358979323846264338327950288 | π number, Archimedes number[३०] | <math> {\pi} </math> | <math>\lim_{n\to \infty }\, 2^{n} \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\text{...} +\sqrt{2}}}}}_n</math> | Sum[n=0 to ∞] {(-1)^n 4/(2n+1)} |
T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] |
1.902160583104 | Brun 2 constant = Σ inverse of Twin primes[३१] | <math>{B}_{\,2}</math> | <math> \textstyle \underset{ p,\, p+2: \, {prime}}{\sum(\frac1{p}+\frac1{p+2})} = (\frac1{3} {+} \frac1{5}) + (\tfrac1{5} {+} \tfrac1{7}) + (\tfrac1{11} {+} \tfrac1{13}) + ...</math> | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | ||
0.870588379975 | Brun 4 constant = Σ inv.prime quadruplets | <math>{B}_{\,4}</math> | <math>\textstyle {\sum(\frac1{p}+\frac1{p+2}+\frac1{p+4}+\frac1{p+6})} \scriptstyle \quad {p,\; p+2,\; p+4,\; p+6: \; {prime}} </math>
<math> \textstyle{\left(\tfrac1{5} + \tfrac1{7} + \tfrac1{11} + \tfrac1{13}\right)}+ \left(\tfrac1{11} + \tfrac1{13} + \tfrac1{17} + \tfrac1{19}\right)+ \dots</math> |
A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | ||
0.46364760900080611621425623146121440 | Machin-Gregory serie[३२] | <math>\arctan \frac {1}{2}</math> | <math> \underset{For \; x = 1/2 \qquad \qquad} {\sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1} = \frac {1}{2} - \! \frac{1}{3 \cdot 2^3} {+} \frac{1}{5 \cdot 2^5} - \! \frac{1}{7 \cdot 2^7} {+}{...}}</math> | Sum[n=0 to ∞] {(-1)^n (1/2)^(2n+1)/(2n+1)} |
T | A073000 | [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] |
0.59634736232319407434107849936927937 | Euler-Gompertz constant[३३] | <math>{G}</math> | <math>\int \limits_{0}^{\infty} \frac{e^{-n}}{1{+}n} dn {=} \int \limits_{0}^{1} \frac{1}{1{-}\ln n} dn =
\textstyle {\frac 1 {1+\frac 1{1+\frac 1{1+\frac 2{1+\frac 2{1+\frac 3{1+\frac 3{1+4{/...}} }}}}}}} </math> |
integral[0 to ∞] {(e^-n)/(1+n)} |
T | A073003 | [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] |
0.69777465796400798200679059255175260 | Continued fraction constant, Bessel function | <math>{C}_{CF}</math> | <math> \frac{I_1(2)}{I_0(2)} = \frac{ \sum \limits_{n = 0}^{\infty} \frac{n}{n!n!}} {{ \sum \limits_{n = 0}^{\infty} \frac{1}{n!n!}}} =
\textstyle \frac 1{1+\frac 1{2+\frac 1{3+\frac 1{4+\frac 1{5+\frac 1{6+1{/...}}}}}}} </math> |
(Sum [n=0 to ∞] {n/(n!n!)}) / (Sum [n=0 to ∞] {1/(n!n!)}) |
A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;(p+1)], p∈ℕ | |
0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i |
Infinite Tetration of i |
<math> {}^\infty {i} </math> | <math> \lim_{n \to \infty} {}^n i = \lim_{n \to \infty} \underbrace{i^{i^{i^{\cdot^{\cdot^{i}}}}}}_n = \underset{ W:\; Lambert \; function}{\frac {2}{\pi}\,i \;W\left(-\frac {\pi}{2}i\right) }</math> | (2/Pi) i ProductLog[-((Pi/2) i)] | A077589 A077590 |
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i | |
2.74723827493230433305746518613420282 | Ramanujan nested radical[३४] | <math> R_{5} </math> | <math>\scriptstyle \sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+
\sqrt{5+\sqrt{5+\sqrt{5-\cdots}}}}}}}\;= \textstyle\frac{2+\sqrt{5}+\sqrt{15-6\sqrt{5}}}{2}</math> |
(2+sqrt(5) +sqrt(15 -6 sqrt(5)))/2 |
I | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | |
1.01494160640965362502120255427452028 | Gieseking constant | <math>{\pi \ln \beta} </math> | <math>\frac{3\sqrt{3}}{4} \left(1- \sum_{n=0}^\infty \frac{1}{(3n+2)^2}+ \sum_{n=1}^\infty\frac{1}{(3n+1)^2} \right)= </math> <math>\textstyle \frac{3\sqrt{3}}{4} \left(1 - \frac{1}{2^2} + \frac{1}{4^2}-\frac{1}{5^2}+\frac{1}{7^2}-\frac{1}{8^2}+\frac{1}{10^2} \pm ... \right)</math>. |
sqrt(3)*3/4 *(1 -Sum[n=0 to ∞] {1/((3n+2)^2)} +Sum[n=1 to ∞] {1/((3n+1)^2)}) |
T | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] |
1.66168794963359412129581892274995074 | Somos' quadratic recurrence constant | <math>{\sigma}</math> | <math>\prod_{n=1}^\infty n^{{1/2}^n} = \sqrt {1 \sqrt {2 \sqrt{3 \cdots}}} = 1^{1/2} \; 2^{1/4} \; 3^{1/8} \cdots </math> | prod[n=1 to ∞] {n ^(1/2)^n} |
T | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] |
0.56714329040978387299996866221035555 | Omega constant, Lambert W function | <math>{\Omega}</math> | <math> \sum_{n=1}^\infty \frac{(-n)^{n-1}}{n!}
=\,\left(\frac{1}{e}\right) ^{\left(\frac{1}{e}\right) ^{\cdot^{\cdot^{\left(\frac{1}{e}\right)}}}} = e^{-\Omega} = {e}^{-e^{-e^{\cdot^{\cdot^साँचा:-e}}}} </math> |
Sum[n=1 to ∞] {(-n)^(n-1)/n!} |
A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] | |
0.96894614625936938048363484584691860 | Beta(3)[३५] | <math>{\beta} (3)</math> | <math> \frac{\pi^3}{32} = \sum_{n=1}^\infty\frac{-1^{n+1}}{(-1+2n)^3} = \frac{1}{1^3} {-} \frac{1}{3^3} {+} \frac{1}{5^3} {-} \frac{1}{7^3} {+} ... </math> | Sum[n=1 to ∞] {(-1)^(n+1) /(-1+2n)^3} |
T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] |
2.23606797749978969640917366873127624 | Square root of 5, Gauss sum[३६] | <math> \sqrt{5} </math> | <math> \scriptstyle (n = 5) \displaystyle \sum_{k=0}^{n-1} e^{\frac{2 k^2 \pi i}{n}} = 1 + e^\frac{2 \pi i} {5} + e^\frac{8 \pi i} {5} + e^\frac{18 \pi i} {5} + e^\frac{32 \pi i} {5}</math> | Sum[k=0 to 4] {e^(2k^2 pi i/5)} |
I | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;(4),...] |
3.35988566624317755317201130291892717 | Prévost constant | <math> \Psi </math> | <math>\sum_{n=1}^{\infty} \frac{1}{F_n} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \cdots</math>
Fn: Fibonacci series |
Sum[n=1 to ∞] {1/Fibonacci[n]} |
I | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] |
2.68545200106530644530971483548179569 | Khinchin's constant[३७] | <math> K_{\,0} </math> | <math> \prod_{n=1}^\infty \left[{1+{1\over n(n+2)}}\right]^{\ln n/\ln 2}</math> | Prod[n=1 to ∞] {(1+1/(n(n+2))) ^(ln(n)/ln(2))} |
? | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] |
सन्दर्भ
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite bookसाँचा:category handlerसाँचा:main otherसाँचा:main other[dead link]
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
- ↑ साँचा:cite book
बाहरी कड़ियाँ
- Constants - from Wolfram MathWorld
- Inverse symbolic calculator (CECM, ISC) (tells you how a given number can be constructed from mathematical constants)
- On-Line Encyclopedia of Integer Sequences (OEIS)
- Simon Plouffe's inverter
- Steven Finch's page of mathematical constants
- Xavier Gourdon and Pascal Sebah's page of numbers, mathematical constants and algorithms