वक्र
साँचा:sidebar with collapsible lists
बोलचाल की भाषा में कोई भी टेढ़ी-मेढ़ी रेखा वक्र (Curve) कहलाती है। किन्तु गणित में, सामान्यतः, वक्र ऐसी रेखा है जिसके प्रत्येक बिंदु पर उसकी दिशा में किसी विशेष नियम से ही परिवर्तन होता हो। यह ऐसे बिंदु का पथ है जो किसी विशेष नियम से ही विचरण करता हो। उदाहरण के लिए, यदि किसी बिंदु की दूरी एक नियत बिंदु से सदा समान रहती हो, तो बिंदुपथ एक वक्र होता है जिसे वृत्त कहते हैं। नियत बिंदु इस वृत्त का केंद्र होता है। यदि वक्र के समस्त बिंदु एक समतल में हो तो उसे समतल वक्र (Plane curve) कहते हैं, अन्यथा उसे विषमतलीय (Skew) या आकाशीय (Space) वक्र कहा जाता है।
परिचय
प्रत्येक समतल वक्र दो चरों के केवल एक समीकरण द्वारा व्यक्त किया जा सकता है। यदि किस वक्र के कार्तीय (Cartesian), या प्रक्षेपीय निर्देशांकों का केवल एक स्वतंत्र चर, या प्राचल (parameter), के बीजीय फलनों के रूप में लिखा जा सके, तो वक्र को बीजीय वक्र (Algebraic curve) कहते हैं। इस वक्र के समीकरण में केवल बीजीय फलन ही आते हैं। यदि समीकरण में अबीजीय (transcendental) फलन आते हैं, तो वक्र अबीजीय वक्र कहलाता है। विभिन्न शांकव बीजीय वक्रों के और चक्रज (cycloid), कैटिनरी (catenary) आदि, अबीजीय वक्रों के उदाहरण हैं। वक्र प्रथम, द्वितीय, तृतीय, कोटि के कहे जाते हैं, यदि उनके समीकरणों में x, या y के प्रथम, द्वितीय, तृतीय, घात आते हों। वृत्त, दीर्घवृत्त (ellipse), परवलय (parabola), अतिपरवलय (hyperbola) द्वितीय कोटि के वक्रों के उदाहरण हैं। वक्र किसी बिंदु पर असंतत (Discontineous) भी हो सकता है। संतत वक्रों पर विचार करते समय उन्हें बिंदुओं की एक एकल अनंती के रूप में भी लिया जा सकता है।
बीजीय वक्र
कोई बीजीय वक्र कहीं पर टूट नहीं सकता, या असंतत नहीं हो सकता। उसकी स्पर्श रेखाओं (tangents) की दिशाओं में अचानक ही परिवर्तन नहीं हो सकता। उसका कोई भी भाग एक सीधी रेखा नहीं हो सकता। इस प्रकार किसी बीजीय वक्र का यह एक सामान्य लक्षण है कि उसको बनानेवाले बिंदु की विभिन्न स्थितियाँ क्रमिक और संतत होती हैं और इन बिंदुओं पर खींची गई स्पर्श रेखाओं की दिशा में परिवर्तन भी क्रमिक और संतत होता है।
परिभाषाएँ
गणित में वक्र को निम्नलिखित तरह से परिभाषित किया जाता है :
माना <math>I</math> वास्तविक संखाओं का कोई दिया हुआ अन्तराल (interval) है। अर्थात यह <math>\mathbb{R}</math> का एक अशून्य (non-empty) तथा संयुक्त (connected) उपसमुच्चय है; तो सतत प्रतिचित्रण (mapping) <math>\,\!\gamma : I \rightarrow X</math> को वक्र <math>\!\,\gamma</math> कहते हैं। यहाँ <math>X</math> टोपोलॉजिकल स्पेस है।