एनटीएससी
NTSC, अर्थात् नैशनल टेलीविज़न सिस्टम कमिटी अधिकांशतः उत्तरी अमेरिका, दक्षिणी अमेरिका, जापान, दक्षिण कोरिया, ताइवान, बर्मा और प्रशांत द्वीप के कुछ प्रदेशों और राष्ट्रों (नक्शा देखें) में प्रयोग किया जाने वाला एनालॉग टेलीविजन सिस्टम है। NTSC अमेरिका की उस मानकीकरण संस्था का भी नाम है जिसने प्रसारण मानक का विकास किया है।[१] पहला NTSC मानक 1941 में विकसित किया गया था और उसमे रंगीन टीवी के लिए कोई प्रावधान नहीं था।
1953 में NTSC मानक के एक दूसरें संशोधित संस्करण को स्वीकृत किया गया था, जिसमें काले और सफेद रिसीवर्स के मौजूदा स्टॉक के साथ अनुकूल रंगीन प्रसारण की अनुमति थी। NTSC व्यापक रूप से स्वीकृत की जाने वाली पहली प्रसारित रंग प्रणाली थी। उपयोग करने के कम से कम आधी शताब्दी के बाद,12 जून 2009 को संयुक्त राज्य अमेरिका में बहुत सारी संख्या में ओवर- द - एअर NTSC प्रसारण को ATSC से परिवर्तित कर दिया गया था और 31 अगस्त 2011, तक कनाडा में भी परिवर्तित हो जाएगा.
इतिहास
नैशनल टेलीविज़न सिस्टम कमिटी 1940 में संयुक्त राज्य संघीय संचार आयोग(FCC) द्वारा स्थापित की गयी थी जिससें संयुक्त राज्य में एनालॉग टेलीविजन प्रणाली के सर्वव्यापक प्रस्तुतीकरण को लेकर कंपनियों के मध्य चल रहे विवाद का समाधान किया जा सके. मार्च 1941 में, समिति ने ब्लैक-एण्ड-व्हाइट टेलीविजन हेतु एक तकनीकी मानक जारी किया था जो रेडियो निर्माता समिति (RMA) द्वारा निर्मित 1936 अनुरोध पर आधारित था। अल्पविकसित साइडबैंड तकनीक के तकनीकी अभ्युदय इमेज रेजोलुजन में वृद्धि हेतु अवसर प्रदान करते थे। NTSC ने RCA के 441 स्कैन लाइन मानक (RCA के NBC TV नेटवर्क द्वारा पहले से ही प्रयोग हो रही) तथा फिल्को और डुमोंट की स्कैन लाइन्स को 605 से 800 करने की इच्छा के तहत एक समझौता किया और 525 स्कैन लाइन्स का चयन किया। इस मानक में प्रति सेकंड 30 फ्रेम्स (इमेज) का फ़्रेम रेट प्रस्तावित है, जिसमें प्रति फ़ील्ड 262.5 लाइनों तथा प्रति सेकंड 60 फील्ड्स पर प्रति फ्रेम दो अंतर्वयन फील्ड्स को सम्मिलित किया गया हैं। निर्णायक अनुरोध के अन्य मानक 4:3 का अभिमुखता अनुपात तथा साउंड सिग्नल (जो उस समय पर काफी नया था) हेतु आवृत्ति अधिमिश्रण (FM) थे।
जनवरी 1950 में, रंगीन टेलीविजन को मानकीकृत करने के लिए समिति का पुनर्गठन किया गया था। 1953 दिसम्बर में, समिति ने सर्वसम्मति से इसे स्वीकार कर लिया जिसे अब NTSC कलर टेलीविजन मानक (बाद में जिसे RS-170a कहा गया) कहा जाता है। "अनुकूल रंग" मानक मौजूदा काले और सफेद टेलीविजन सेटों के साथ पूर्ण रूप से बैकवर्ड संगतता बनाए रखता है। वीडियो सिग्नल में 455/572 × 4.5 MHz (लगभग 3.58 MHz) का कलर सबकैरियर जोड़कर ब्लैक-एण्ड-व्हाइट इमेज में रंगीन जानकारी जोड़ी गयी थी। क्रोमिनेंस सिग्नल तथा FM के मध्य हस्तक्षेप की दृश्यता को कम करने के लिए साउंड कैरियर को आवश्यकता होती है जिससे कि फ्रेम रेट 30 फ्रेम प्रति सेकंड से लगभग 29.97 फ्रेम प्रति सेकंड हो जाये और आवृत्ति 15,734.26 हर्ट्ज से 15,750 हर्ट्ज हो जाये.
FCC ने एक भिन्न कलर टेलीविजन स्टेंडर्ड को अनुमोदित किया जो अक्टूबर 1950 में शुरू हुआ था और CBS द्वारा विकसित किया गया था।[२] हालांकि, यह मानक ब्लैक-एण्ड-व्हाइट प्रसारण के साथ अनुकूल नहीं था। इसमें आवर्ती रंगीन पहिये का उपयोग किया गया था, स्कैन लाइन्स की संख्या 525 से घटकर 405 हो गयी थी, तथा फील्ड रेट 60 से बढ़कर 144 हो गया था (पर प्रभावी फ्रेम दर केवल 24 फ्रेम प्रति सेकंड था) प्रतिद्वंद्वी RCA द्वारा कानूनी कार्रवाई ने प्रणाली के वाणिज्यिक उपयोग को जून 1951 तक हवा से दूर रखा और नियमित प्रसारण केवल कुछ महीनों तक ही चल पाया क्योकि कोरियाई युद्ध के कारण रक्षा संघटन विभाग (ODM) ने अक्टूबर में सभी रंगीन टेलीविजन सेटों के निर्माण पर प्रतिबंध लगा दिया था।[३] CBS ने मार्च 1953 में अपनी इस प्रणाली को निरस्त कर दिया,[४] तथा FCC ने 17 दिसम्बर 1953 को इस प्रणाली को NTSC कलर स्टेंडर्ड से बदल दिया, जो RCA और फिल्को सहित कई कंपनियों के सहयोग से विकसित किया गया था।[५] NTSC "अनुकूल रंगीन" प्रणाली का उपयोग कर पहला सार्वजनिक रूप से घोषित नेटवर्क टीवी प्रसारण NBC के कुकला, फ्रन एंड ओल्ली कार्यक्रम का एक प्रसंग था, हालांकि इसे केवल नेटवर्क मुख्यालय पर ही रंगीन रूप में देखा जा सकता था।[६] NTSC कलर का पहला राष्ट्रव्यापी दर्शन रोसेस पराडे टूर्नामेंट के तट दर तट प्रसारण के साथ 1 जनवरी को आया था। यह प्रसारण देश भर में प्रोटोटाइप रंग रिसीवर्स पर विशेष प्रस्तुतियों द्वारा देखा जा सकता था।
पहला रंगीन NTSC टेलीविजन कैमरा RCA TK-40 था जो 1953 में प्रयोगात्मक प्रसारण के लिए उपयोग किया गया था; इसका एक उन्नत संस्करण TK-40A मार्च में प्रस्तुत हुआ था, यह वाणिज्यिक रूप से उपलब्ध पहला रंगीन टीवी कैमरा था। बाद में उसी वर्ष संशोधित TK-41 मानक कैमरा बन गया जो 1960 के दशक में इस्तेमाल किया गया था।
NTSC मानक जापान और अमेरिका सहित अन्य अधिकांश देशों द्वारा अपनाया गया है। डिजिटल टेलीविजन के आगमन के साथ, एनालॉग प्रसारण खत्म होता जा रहा हैं। 2009 में अपने एनालॉग ट्रांसमिटर को बंद करने के लिए FCC को ज्यादातर अमेरिकी NTSC प्रसारकों की आवश्यकता थी। कम विद्युत स्टेशन, क्लास A स्टेशन और अनुवादक एकदम से प्रभावित नहीं होते हैं। इन स्टेशनों के लिए एनालॉग अंतिम तिथि निर्धारित नहीं की गयी हैं।
तकनीकी विवरण
पंक्ति और ताज़ा दर
NTSC रंग एन्कोडिंग सिस्टम M टेलीविजन सिग्नल, जिसमें प्रति सेकंड वीडियो के लिए 29.97 अंतर्वयन फ्रेम्स होते हैं, अथवा जापान के लगभग समान सिस्टम J के साथ उपयोग होती है। प्रत्येक फ्रेम में कुल 525 स्कैन लाइन्स होती हैं, जिसमें से 486 लाइन्स स्पष्ट रेखापुंज का निर्माण करती हैं। शेष (ऊर्ध्वाधर रिक्त अंतराल) तुल्यकालन और ऊर्ध्वाधर प्रतिधाव हेतु उपयोग की जाती हैं। यह रिक्त अंतराल मूलतः रिसीवर CRT को बस खाली करने के लिए डिजाइन किया गया था जिससे सरल एनालॉग सर्किट और पूर्व टीवी रिसीवर को धीमी ऊर्ध्वाधर प्रतिधाव की अनुमति दे जा सके. हालांकि, इनमें से कुछ पंक्तिया अब सीमित अनुशीर्षक और वर्टिकल इंटरवल टाइमकोड (VITC) जैसा डाटा भी सम्मिलित कर सकती हैं। संपूर्ण रेखापुंज में (आधी लाइनों को छोड़कर), सम-क्रमांकित अथवा "लघु" स्कैन लाइन्स (हर दूसरी लाइन सम होगी अगर उसकी गणना वीडियो सिग्नल में होगी जैसे (2,4,6, ..., 524)) पहले क्षेत्र में बनायीं जाती हैं और विषम क्रमांकित या "उच्च" (हर दूसरी लाइन विषम होगी अगर उसकी गणना वीडियो सिग्नल में होगी जैसे (1,3,5, ..., 525)) दूसरे क्षेत्र में बनायीं जाती हैं, जिससे लगभग 59.94 हर्ट्ज (वास्तव में 60 Hz/1.001) की फील्ड रिफ्रेश आवृत्ति पर बिना झिलमिलाहट वाली छवि प्राप्त की जा सके. तुलना के लिए, 576i सिस्टम जैसे PAL-B/G तथा SECAM 625 लाइनों (576 स्पष्ट) का उपयोग करते हैं, इसलिए इनका ऊर्ध्वाधर विभेदन अधिक होता हैं, लेकिन इनका कालिक विभेदन केवल 25 फ्रेम्स या प्रति सेकण्ड 50 फील्ड्स होता है जो कि कम है।
ब्लैक-एण्ड-व्हाइट सिस्टम की NTSC फील्ड रीफ्रेश आवृत्ति मूलतः संयुक्त राज्य अमेरिका में उपयोग होने वाले एकांतर करंट पावर की नाममात्र 60 हर्ट्ज आवृत्ति के बिल्कुल समान है। पावर सोर्से से फील्ड रीफ्रेश रेट का मिलान इंटरमाडउलेशन (जिसे बीटिंग भी कहते है) से बचाता है जिसके कारण स्क्रीन पर रोलिंग बार्स का उत्पादन होता हैं, बाद में जब सिस्टम में रंग जोड़ा गया, तो रीफ्रेश आवृत्ति को थोड़ा नीचे 59.94 हर्ट्ज पर स्थानांतरित कर दिया गया था जिससे ध्वनि और कलर कैरियर के मध्य भिन्न आवृत्ति में स्थिर डॉट पैटर्न को समाप्त किया जा सके, जैसा कि नीचे रंग कूटलेखन में समझाया गया है। संयोगवश पावर के साथ रीफ्रेश रेट का तुल्यकालन कीनेस्कौप कैमरों को पूर्व सजीव टेलीविजन प्रसारण रिकार्ड करने मे मदद करता है, क्योंकि एकांतर करंट आवृत्ति का उपयोग करके प्रत्येक फिल्म फ्रेम पर वीडियो का एक फ्रेम केप्चर करने के लिए एक फिल्म कैमरे को सिंक्रनाइज़ करना बहुत आसान था जिससे तुल्यकालिक AC मोटर ड्राइव कैमरे की गति को सेट किया जा सके. समय के साथ रंग के लिए फ्रेम दर 29.97 हर्ट्ज हो गया, यह लगभग वीडियो सिग्नल से कैमरे के शटर को ट्रिगर करने जितना आसान था।
525 लाइनों की संख्या को वैक्यूम ट्यूब आधारित तकनीकों की सीमाओं के एक परिणाम के रूप में चुना गया था। पूर्व TV सिस्टम में, एक मास्टर वोल्टेज-नियंत्रित दोलक क्षैतिज रेखा आवृत्ति की दुगनी आवृत्ति पर चलता था और यह आवृत्ति क्षेत्र आवृत्ति (इस मामले में 60 हर्ट्ज) प्राप्त करने के लिए उपयोग होने वाली लाइनों की संख्या (इस मामले में 525) द्वारा विभाजित की जाती थी). फिर इस आवृत्ति की तुलना 60 हर्ट्ज पावर-लाइन आवृत्ति के साथ की जाती है और किसी भी विसंगति को मास्टर दोलक की आवृत्ति को समायोजित करके सही किया जाता है। अंतर्वयन स्कैनिंग के लिए, प्रति फ्रेम विषम संख्या में लाइनों की आवश्यकता होती है जिससे सम तथा विषम क्षेत्रों के लिए ऊर्ध्वाधर प्रतिधाव दूरी को समान बनाया जा सके; एक अतिरिक्त विषम लाइन का मतलब है कि अंतिम विषम लाइन से पहली सम लाइन तक वापिस आने में उतनी ही समान दूरी तय होती है जो अंतिम सम लाइन से पहली विषम लाइन तक वापिस आने में तय होती है अत: यह प्रतिधाव सर्किट्री को सरल बनाता है। 500 के सबसे ज्यादा करीबी व्यावहारिक अनुक्रम 3 × 5 × 5 × 7 = 525 था। इसी तरह, 625-लाइन PAL-B/G और SECAM 5 × 5 × 5 × 5 का उपयोग करता हैं। ब्रिटिश 405-लाइन सिस्टम 3 × 3 × 3 × 3 × 5 का इस्तेमाल करते हैं, फ्रेंच 819-लाइन सिस्टम का 3 × 3 × 7 × 13 का उपयोग करते हैं।
वर्णमिति
मूल 1953 रंग NTSC विनिर्देश, जो अभी भी संयुक्त राज्य अमेरिका के संघीय विनियम संहिता का एक भाग है, सिस्टम के वर्णमिति मूल्यों को निम्नानुसार परिभाषित करता है:[७]
मूल NTSC वर्णमिति (1953) | CIE 1931 x | CIE 1931 y | |
---|---|---|---|
प्राथमिक लाल | 0.67 | 0.33 | |
प्राथमिक हरा | 0.21 | 0.71 | |
प्राथमिक नीला | 0.14 | 0.08 | |
सफेद बिंदु (CIE प्रदीपक C) | 0.310 | 0.316 |
पूर्व कलर टेलीविजन रिसीवर जैसे RCA CT-100 इस विनिर्देश के लिए वफादार थे, इनमें आजकल के मॉनिटर की तुलना में ज्यादा स्वर था। हालांकि उनके कम कुशल फोस्फोरस गहरे और लंबे समय से अनवरत थे, जो गतिमान वस्तुओं का पीछा करते थे। 1950 के आखरी दशक में शुरू होने वाले, पिक्चर ट्यूब फोस्फोरस अत्यधिक चमक के लिए संतृप्ति का बलिदान करेंगे; मानक से यह विचलन रिसीवर और प्रसारक दोनों सीमायों पर विचारणीय रंग भिन्नता का स्रोत था।[८]
स्टूडियो मॉनिटर्स तथा घरेलु रिसीवर में रंग सुधार
अधिक समान रंग का प्रजनन सुनिश्चित करने के लिए, रिसीवर ने ऐसे रंग सुधार सर्किट सामिलित करने शुरू कर दिए है जो प्राप्त सिग्नल---ऊपर सूचीबद्ध वर्णमिति मूल्यों के लिए एनकोडेड---को वास्तव में रिसीवर में उपयोग होने वाले फोस्फोरस हेतु एनकोडेड सिग्नल में परिवर्तित करता है।[८] चूंकि इस तरह के रंग सुधार प्रेषित अरेखीय (गामा-संशोधित) सिग्नल्स पर सही ढंग से लागू नहीं किये जा सकते, इसलिए समायोजन का लगभग अनुमान ही लगा सकते हैं,[९]जिसके कारण उच्च-संतृप्त रंगों में हए और लुमिनांस त्रुटि उत्पन्न हो जाती है।
इसी तरह प्रसारक मंच पर, 1968-69 में कोन्राक कार्पोरेशन, जो RCA के साथ काम कर रही है, प्रसारण कलर पिक्चर मॉनिटर में उपयोग हेतु नियंत्रित फोस्फोरस के एक सेट को परिभाषित करता है।[८] यह विनिर्देशन SMPTE "C" फॉस्फर विनिर्देश के रूप में आज भी जीवित है:
वर्णमिति SMPTE "C" | CIE 1931 x | CIE 1931 y | |
---|---|---|---|
प्राथमिक लाल | 0.630 | 0.340 | |
प्राथमिक हरा | 0.310 | 0.595 | |
प्राथमिक नीला | 0.155 | 0.070 | |
सफेद बिंदु (CIE प्रदीपक D65) | 0.3127 | 0.3290 |
घरेलू रिसीवर की तरह, पहले ऐसी सलाह[१०] दी गयी थी कि स्टूडियो मॉनिटर्स समान रंग सुधार सर्किट को सम्मिलित करे जिससे प्रसारक FCC मानक के अनुसार मूल 1953 वर्णमिति मूल्यों के लिए एनकोडेड चित्रों को संचारित करे.
1987 में, सोसायटी ऑफ़ मोशन पिक्चर एंड टेलीविजन इंजीनियर्स (SMPTE) टेलीविजन प्रौद्योगिकी पर एक समिति, स्टूडियो मॉनिटर वर्णमिति पर कार्य समिति, ने संस्तुति अभ्यास 145[११] में सामान्य उपयोग के लिए SMPTE C (कोन्राक) फोस्फोरस को स्वीकार कर लिया है, जिसने कई निर्माताओं को रंग सुधार किये बिना ही सीधे SMPTE "C" वर्णमिति हेतु इनकोड करने के लिए अपने कैमरे डिजाइन को संशोधित करने के लिए उत्साहित किया हैं,[१२] जैसा कि SMPTE मानक 170M, "मिश्रित एनालॉग वीडियो सिग्नल---स्टूडियो अनुप्रयोग हेतु NTSC" (1994) में स्वीकार किया गया है। परिणाम स्वरूप, ATSC डिजिटल टीवी मानक यह स्पष्ट किया है कि 480i सिग्नल्स के लिए, SMPTE "C" वर्णमिति को स्वीकार कर लेना चाहिए जब तक परिवहन स्ट्रीम में वर्णमिति डाटा को सम्मिलित ना कर लिया जाये.[१३]
भिन्नताएं
जापानी NTSC लाल, नीले और हरे रंग के लिए समान वर्णमिति मूल्यों का उपयोग करता है, लेकिन CIE प्रदीपक D93 (x=0.285, y = 0.293) के एक अलग सफेद दृष्टिकोण का उपयोग करता है।[१०] 1970 तक PAL और SECAM सिस्टम्स दोनों मूल 1953 NTSC वर्णमिति का उपयोग करते हैं,[१०] तथापि NTSC के विपरीत, 1970 में यूरोपीयन ब्रॉडकास्टिंग यूनियन (EBU) रिसीवर और स्टूडियो में से रंग सुधार को हटा दिया और इसके बजाय उन्होंने सभी उपकरणों के लिए "EBU" वर्णमिति मान हेतु सीधे सिग्नल्स को एनकोड करना उचित समझा[१४], जिसने इन सिस्टम्स की रंग निष्ठा को और संशोधित कर दिया.
रंग कूटबन्धन
ब्लैक-एण्ड-व्हाइट टेलीविजन के साथ बैकवर्ड संगतता के लिए, NTSC लुमिनांस-क्रोमिनेंस कूटबन्धन प्रणाली का उपयोग करता है जिसका आविष्कार 1938 में गोर्गेस वलेंसी ने किया था। लुमिनांस (गणितीय रूप से मिश्रित रंग सिग्नल्स से व्युत्पन्न) मूल मोनोक्रोम सिग्नल की जगह लेता है। क्रोमिनेंस में रंग से सम्बंधित जानकारी होती है। यह ब्लैक-एण्ड-व्हाइट रिसीवर को क्रोमिनेंस की अनदेखी करके NTSC सिग्नल्स प्रदर्शित करने की अनुमति देता है।
NTSC में, क्रोमिनेंस दो 3.579545 मेगाहर्टज सिग्नल्स का उपयोग करके इनकोड होता है यह सिग्नल्स 90 डिग्री फेज के बाहर होते हैं, इन्हें I (इन-फेज) तथा Q (क्वाड्रेचर) QAM कहते हैं। यह दोनों सिग्नल्स आयाम मॉड्यूलेटेड होते हैं और फिर एक साथ जोड़े जाते है। कैरियर को दबा दिया जाता है। गणितीय रूप से, परिणाम स्वरूप आप भिन्न फेज (भिन्न आयाम और संदर्भ के सापेक्ष में) के साथ एकल साइन वेव देख सकते हैं। फेज एक टीवी कैमरे द्वारा कैप्चर किये गए तात्कालिक रंग हए को प्रदर्शित करता है और आयाम तात्कालिक रंग संतृप्ति को प्रदर्शित करता है।
I/Q फेज से हए जानकारी पुन: प्राप्त करने के लिए, TV के पास शून्य फेज संदर्भ को बदलने के लिए दबा हुआ कैरियर होना आवश्यक है। इसे संतृप्ति जानकारी को प्राप्त करने के लिए आयाम हेतु एक संदर्भ की भी जरूरत होती है। अत:, NTSC सिग्नल के पास इस संदर्भ सिग्नल का छोटा नमूना होता है, जिसे कलर बर्स्ट कहते है, जो प्रत्येक क्षैतिज रेखा के 'बैक पोर्च' पर स्थित है (क्षैतिज तुल्यकालन पल्स के अंत तथा रिक्त पल्स के अंत के बीच का समय). कलर बर्स्ट में अनमॉड्यूलेटेड (फिक्स्ड फेज और आयाम) कलर सबकैरियर के न्यूनतम आठ चक्रों को सम्मिलित किया जाता है। टीवी रिसीवर के पास एक "स्थानीय दोलक" होता है जिसे वह कलर बर्स्ट के साथ सिंक्रोनाइज करता है तथा फिर क्रोमिनेंस को डिकोड करने के लिए इसे सन्दर्भ की तरह उपयोग करता है। रेखापुंज स्कैन में एक खास बिंदु पर कलर बर्स्ट से प्राप्त संदर्भ सिग्नल तथा क्रोमिनेंस सिग्नल के आयाम और फेज की तुलना करके, उपकरण यह निर्धारित करता है कि उस बिंदु पर क्या क्रोमिनेंस प्रदर्शित होगा. लुमिनांस सिग्नल के आयाम के साथ संयोजित करके रिसीवर यह गणना करता है इस बिंदु अर्थात्् लगातार स्कैनिंग बीम की तात्कालिक स्थिति वाला बिंदु, के निर्माण हेतु कौन से रंग की आवश्यकता है। ध्यान दें कि एनालॉग टीवी ऊर्ध्वाधर आयाम में भिन्न है (इसमें अलग-अलग लाइनें हैं), लेकिन क्षैतिज आयाम में निरंतर है (प्रत्येक बिंदु अगले बिंदु के साथ बिना किसी सीमा के साथ मिल जाता है), इसलिए एनालॉग टीवी में पिक्सेल नहीं होते है। (एनालॉग सिग्नल्स प्राप्त करने वाले डिजिटल टीवी सेट निरंतर क्षैतिज स्कैन लाइनों को प्रदर्शित करने से पहले असतत पिक्सल में परिवर्तित कर देते है। प्रथक्करण की यह प्रक्रिया कुछ हद तक पिक्चर सूचना को घटाती है, हालांकि छोटे पिक्सल के साथ प्रभाव अतीन्द्रिय हो सकता है। डिजिटल सेट प्रदर्शित डिवाइस जैसे LCD,प्लाज्मा और DLP स्क्रीन लेकिन परंपरागत CRTs नहीं, पर अंतर्निहित असतत पिक्सल की मैट्रिक्स के साथ सभी सेट्स को सम्मिलित करते हैं। प्लाज्मा या DLP प्रदर्शित पैनल से प्राप्त उच्च गुणवत्ता वाली छवि प्रथक्करण के माध्यम से छवि की गुणवत्ता में हुई सभी हानि को ऑफसेट कर सकती हैं।)
जब एक ट्रांसमीटर एक NTSC सिग्नल का प्रसारण करता है, यह आयाम हाल में ही वर्णित NTSC के साथ रेडियो आवृत्ति कैरियर को मॉड्यूलेट करता है, जबकि यह आवृत्ति ऑडियो सिग्नल के साथ कैरियर 4.5 मेगाहर्ट्ज उच्च को मॉड्यूलेट करता है। अगर अरैखिक विरूपण सिग्नल प्रसारित करने के लिए होता है, 3.579545 मेगाहर्ट्ज रंग कैरियर स्क्रीन पर डॉट पैटर्न का उत्पादन करने के लिए साउंड कैरियर के साथ टकरा सकता है। परिणामस्वरूप प्राप्त हुए पैटर्न को कम ध्यान योग्य बनाने के लिए, डिजाइनर ने 60 हर्ट्ज के मूल फील्ड रेट को लगभग 1.001 (0.1%) कम करके 59.94 फील्ड्स प्रति सेकंड समायोजित कर दिया है। यह समायोजन सुनिश्चित करता है कि साउंड कैरियर और कलर सबकैरियर और उनके गुणज (अर्थात्, दो कैरियर का इंटरमॉड्यूलेशन गुणन फल) का जोड़ और अंतर फ्रेम रेट का सटीक गुणज नहीं है, जो स्क्रीन पर डॉट्स के स्थिर रहने के लिए महत्वपूर्ण आवश्यकता है, जो इन्हें ज्यादा ध्यान देने योग्य बनाती है।
59.94 दर निम्नलिखित गणना से प्राप्त होता है। डिजाइनर क्रोमिनेंस सबकैरियर आवृत्ति को लाइन आवृत्ति का n +0.5 गुणज बनाना पसंद करते है जिससे क्रोमिनेंस सिग्नल और लुमिनांस सिग्नल के मध्य हस्तक्षेप को कम से कम हो सके. (एक अन्य तरीका अक्सर यह निर्धारित करता है कि कलर सबकैरियर आवृत्ति रेखा आवृत्ति का आधा विषम गुणज है।) फिर वे ऑडियो सबकैरियर आवृत्ति को रेखा आवृत्ति का एक पूर्णांक गुणज बनाते है जिससे ऑडियो सिग्नल और क्रोमिनेंस सिग्नल के मध्य स्पष्ट (इंटरमॉड्यूलेशन) हस्तक्षेप को कम से कम किया जा सके. 15750 हर्ट्ज रेखा आवृत्ति और 4.5 मेगाहर्ट्ज ऑडियो सबकैरियर के साथ मूल ब्लैक-एण्ड-व्हाइट मानक इन आवश्यकताओं को पूरा नहीं करता है, अत: डिजाइनरों को या तो ऑडियो सबकैरियर आवृत्ति बढानी पड़ती है या रेखा आवृत्ति को कम करना पड़ता है। ऑडियो सबकैरियर आवृत्ति में वृद्धि मौजूदा (काले और सफेद) रिसीवर को ठीक से ऑडियो सिग्नल में ट्यूनिंग करने से रोक सकती है। रेखा आवृत्ति कम करना अपेक्षाकृत अहानिकर है, क्योंकि NTSC सिग्नल में क्षैतिज और ऊर्ध्वाधर तुल्यकालन सूचना एक रिसीवर को रेखा आवृत्ति में विविधता की एक पर्याप्त मात्रा सहन करने की अनुमति देती है। इसलिए इंजीनियर्स रंग मानक के लिए रेखा आवृत्ति को बदलना चुनते हैं। मूल ब्लैक-एण्ड-व्हाइट मानक में, ऑडियो सबकैरियर आवृत्ति का रेखा आवृत्ति से अनुपात 4.5 मेगाहर्ट्ज/15750 = 285.71 है। रंग मानक में, यह लगभग 286 पूर्णांक बन जाता है, जिसका अर्थ है कि रंग मानक का लाइन रेट 4.5 मेगाहर्ट्ज /286 = लगभग 15,734 लाइन प्रति सेकंड है। प्रति फील्ड (तथा फ्रेम) स्कैन लाइन की समान संख्या बनाए रखने के लिए, कम पंक्ति दर कम फील्ड दर देता है। (4,500,000 / 286) लाइन्स प्रति सेकंड को प्रति फील्ड 262.5 लाइनों द्वारा भाग देने पर प्रति सेकंड लगभग 59.94 फील्ड्स प्राप्त होते है।
प्रसारण अधिमिश्रण योजना
NTSC टेलीविजन चैनल प्रसारित होने पर कुल 6 मेगाहर्ट्ज की बैंडविड्थ पर कब्ज़ा करता है। वास्तविक वीडियो सिग्नल, जो आयाम-आपरिवर्तन है, चैनल के लोवर बाउंड के ऊपर 500 kHz और 5.45 मेगाहर्ट्ज के मध्य प्रसारित होता है। वीडियो कैरियर चैनल की लोवर बाउंड के ऊपर 1.25 मेगाहर्ट्ज है। ज्यादातर AM सिग्नल्स की तरह, वीडियो कैरियर दो साइडबैंड, एक कैरियर के ऊपर और एक नीचे, उत्पन्न करता है। प्रत्येक साइडबैंड 4.2 मेगाहर्ट्ज व्यापक होता हैं। संपूर्ण ऊपरी साइडबैंड प्रसारित होता है, लेकिन लोवर साइडबैंड का केवल 1.25 मेगाहर्ट्ज, जिसे वेस्टिजियल साइडबैंड कहते है, ही प्रसारित होता है। रंग सबकैरियर, जैसा कि ऊपर बताया गया है, वीडियो कैरियर के ऊपर 3.579545 मेगाहर्ट्ज है, से ऊपर है और यह क्वाड्रेचर-आयाम-आपरिवर्तन के साथ दबा हुआ कैरियर है। ऑडियो सिग्नल आवृत्ति-आपरिवर्तन है, जैसे कि 88-108 मेगाहर्ट्ज बैंड पर FM रेडियो स्टेशनों द्वारा प्रसारित आडियो सिग्नल, लेकिन +/-25 kHz अधिकतम आवृत्ति स्विंग के साथ, 75 KHz के विपरीत जैसा कि FM बैंड पर उपयोग किया जाता है। मुख्य ऑडियो कैरियर वीडियो कैरियर के ऊपर 4.5 मेगाहर्ट्ज है, जो इसे चैनल के शीर्ष के नीचे 250 kHz बनाता है। कभी कभी एक चैनल में MTS सिग्नल होते है, जो ऑडियो सिग्नल पर एक या दो सबकैरियर जोड़कर एक से ज्यादा ऑडियो सिग्नल प्रदान करता है, जिसमें प्रत्येक लाइन आवृत्ति के गुणज के लिए सिंक्रनाइज़ होता हैं। सामान्य रूप से यह वही केस है जब स्टीरियो ऑडियो और/या दूसरा ऑडियो कार्यक्रम सिग्नल्स का उपयोग किया जाता है। ATSC में समान एक्सटेंशन का उपयोग किया जाता है, जहां ATSC डिजिटल कैरियर चैनल के लोवर बाउंड के ऊपर 1.31 मेगाहर्ट्ज पर प्रसारित होता है।
Cvbs (मिश्रित ऊर्ध्वाधर रिक्त सिगनल) (जिसे कभी कभी "सेटअप" कहते है) "काले" और "रिक्त" स्तर के मध्य एक वोल्टेज ऑफसेट है। Cvbs NTSC के लिए अद्वितीय है। Cvbs ने NTSC वीडियो को अपने प्राथमिक सिंक्रनाइज़ेशन सिग्नल्स से अलग और अधिक आसानी से बनाने का लाभ दिया है।
फ्रेमरेट रूपांतरण
24.0 फ्रेम प्रति सेकंड पर चलने वाली फिल्म और NTSC मानक, जो प्रति सेकंड लगभग 29.97 फ्रेम्स पर चलता है, के मध्य फ्रेमरेट में बड़ा अंतर है।
576i वीडियो प्रारूपों के विपरीत यह अंतर सरल रूप से गति बढाकर खत्म नहीं किया जा सकता.
एक जटिल प्रक्रिया जिसे "3:2 पुलडाउन" कहते है, का उपयोग किया जाता है। एक फिल्म फ्रेम तीन वीडियो फील्ड्स (1½ वीडियो फ्रेम बार) के लिए प्रसारित होता है और अगला फ्रेम दो वीडियो फील्ड्स (एक वीडियो फ्रेम का समय) के लिए प्रसारित होता है। इसलिए दो 24 फ्रेम/s फिल्म फ्रेम पाँच 60 हर्ट्ज के वीडियो फील्ड्स में प्रसारित होते हैं, औसत मान 2½ वीडियो फील्ड्स प्रति फिल्म फ्रेम हैं। औसत फ्रेम दर 60/2.5 = 24 फ्रेम/s है, इसलिए औसत फिल्म की गति बिल्कुल वही है जो होनी चाहिए. हालांकि, यहां कमियां हैं। फिर भी प्लेबैक पर फ्रेमिंग दो अलग अलग फिल्म फ्रेम से फील्ड्स के साथ वीडियो फ्रेम प्रदर्शित कर सकती है, तो फ्रेम के बीच कोई भी गमन तेजी से पीछे और आगे झिलमिलाहट के रूप में दिखाई देगा. धीमे कैमरा पैन्स (टेलेसीने जुडर) के दौरान ध्यान देने योग्य कम्पन/"खड़खड़ाहट" हो सकती है।
3:2 पुलडाउन से बचने के लिए, फिल्म शोट विशेष रूप से NTSC टेलीविजन के लिए अक्सर 30 फ्रेम/s लिया जाता है।साँचा:category handler[<span title="स्क्रिप्ट त्रुटि: "string" ऐसा कोई मॉड्यूल नहीं है।">citation needed]
NTSC उपकरण पर मूल 576i सामग्री (जैसे यूरोपीय टेलीविजन श्रृंखला तथा कुछ यूरोपीय फिल्म) देखने के लिए मानक रूपांतरण होना चाहिए. मूलतः इसे प्राप्त करने के दो तरीके हैं।
- फ्रेमरेट को 25 फ्रेम्स प्रति सेकंड से कम कर 23.976 किया जा सकता है (लगभग 4% कम करना) जिससे 3:2 पुलडाउन लागू किया जा सके.
- नए मध्यवर्ती फ्रेम्स का निर्माण करने के लिए निकटवर्ती फ्रेम्स की विषयवस्तु का अंतर्वेशन; जब तक उच्च परिष्कृत गति-संवेदन कंप्यूटर एल्गोरिदम लागू न हो जाये, यह शिल्पकृति को प्रस्तुत करता है और यहां तक कि सबसे संकोचशील ढंग से आँखों का प्रशिक्षित भी उस वीडियो को शीघ्रता से समझ सकता हैं जो प्रारूप के बीच परिवर्तित किया गया है।
एनालॉग उपग्रह प्रसारण के लिए अधिमिश्रण
क्योंकि उपग्रह शक्ति गंभीर रूप से सीमित है इसलिए उपग्रहों के माध्यम से एनालॉग वीडियो प्रसारण स्थलीय टीवी प्रसारण से अलग है। AM एक रेखीय अधिमिश्रण विधि है, तो एक डिमॉड्यूलेटेड सिग्नल से शोर अनुपात (SNR) को समान रूप से उच्च RF SNR की आवश्यकता होती है। स्टूडियो गुणवत्ता वाले वीडियो का SNR 50 dB से भी ऊपर है, इसलिए AM को निषेधात्मक ढंग से उच्च शक्तियों और/या बड़े ऐंटिना की आवश्यकता होगी.
कम शक्ति हेतु RF बैंडविड्थ को बदलने के बजाय वाइडबैंड FM का ्रयोग किया जाता है। चैनल बैंडविड्थ को 6 से 36 मेगाहर्ट्ज तक बढ़ाना केवल 10 dB या उससे कम RF SNR की अनुमति देता है। व्यापक नोइस बैंडविड्थ इस 40 dB बिजली की बचत को 32 DB के एक महत्वपूर्ण नेट न्यूनीकरण के लिए 36 मेगाहर्ट्ज/6 मेगाहर्ट्ज = 8 dB तक कम कर देती है।
स्थलीय प्रसारण की तरह ध्वनि FM सबकैरियर पर है, लेकिन 4.5 मेगाहर्ट्ज से ऊपर आवृत्तियों को कर्ण/दृश्य छेड़-छाड़ कम करने के लिए उपयोग किया जाता है।
6.8, 5.8 और 6.2 मेगाहर्ट्ज सामान्य रूप से उपयोग होते हैं। स्टीरियो मल्टीप्लेक्स या असतत और
असंबंधित ऑडियो और डाटा सिग्नल्स को अतिरिक्त सबकैरियर्स पर रखा जा सकता है।
एक त्रिकोणीय 60 हर्ट्ज ऊर्जा वितरण तरंग को अधिमिश्रण से पहले समग्र बेसबैंड सिग्नल (वीडियो प्लस ऑडियो और डाटा सबकैरियर्स) में जोड़ा जाता है। अगर वीडियो सिग्नल नष्ट हो जाये तो यह उपग्रह पावर वर्णक्रमीय घनत्व को सीमित कर देता है। अन्यथा उपग्रह अपनी सारी शक्ति को समान आवृत्ति बैंड में स्थलीय माइक्रोवेव लिंक के साथ हस्तक्षेप करते हुए एक ही आवृत्ति पर संचारित कर सकता है।
आधे ट्रांसपोंडर मोड में, समग्र बेसबैंड सिग्नल की आवृत्ति विचलन 18 मेगाहर्ट्ज तक कम कर दी जाती है जिससे 36 मेगाहर्ट्ज ट्रांसपोंडर के दूसरे भाग में अन्य सिग्नल को अनुमति दी जा सके. यह FM को लाभ कुछ हद तक कम कर देता है और पुन: प्राप्त किये गए SNRs को आगे कम कर दिया जाता है क्योंकि उपग्रह ट्रांसपोंडर में अंतअधिमिश्रण विरूपण से बचने के लिए संयुक्त सिग्नल पावर को "पीछे हटा" देना चाहिए. एकल FM सिग्नल एक निरंतर आयाम है, तो यह विरूपण के बिना एक ट्रांसपोंडर को तर कर सकता हैं।
फील्ड क्रम
एक NTSC 'फ्रेम' में 'विषम' फील्ड का अनुसरण करते हुए 'सम' फील्ड को सम्मिलित किया जाता है।[१५] जहां तक एक एनालॉग सिग्नल के अभिग्रहण का संबंध है, यह विशुद्ध रूप से समझौते का विषय है और इससे कोई फर्क नहीं पड़ता है। वास्तव में इससे कोई फर्क नहीं पड़ता कि वह एक रेखा/अंतरिक्ष जोड़ी या एक अंतरिक्ष/रेखा जोड़ी है, एक ड्राइवर के लिए प्रभाव बिल्कुल एक जैसा होता है।
डिजिटल टेलीविजन प्रारूपों के परिचय ने तथ्यों को कुछ बदल दिया है। ज्यादातर डिजिटल टीवी प्रारूप, लोकप्रिय DVD प्रारूप को सम्मिलित करते हुए, सबसे पहले रिकॉर्डिड फ्रेम में सम फील्ड के साथ NTSC द्वारा उत्पन्न वीडियो को रिकॉर्ड करते हैं (DVD का विकास उन स्थानों पर किया जाता हैं जो परंपरागत रूप से NTSC का उपयोग करते हो. हालांकि यह फ्रेम अनुक्रम डिजिटल वीडियो के तथाकथित PAL प्रारूप (वास्तव में तकनीकी रूप से विवरण गलत है) के माध्यम से स्थानांतरित हो गया है, इस परिणाम के साथ कि सम फील्ड अक्सर फ्रेम में पहले रिकॉर्ड होते हैं (यूरोपीय 625 लाइन प्रणाली को विषम फ्रेम फर्स्ट की तरह निर्दिष्ट कर सकते है। अब यह समझौते का विषय नहीं है क्योंकि डिजिटल वीडियो का एक फ्रेम रिकॉर्डिड माध्यम पर एक अलग इकाई है। इसका मतलब यह है कि जब कई गैर NTSC आधारित डिजिटल प्रारूपों (DVD सहित) का निर्माण होता हैं तो यह आवश्यक है कि फील्ड आदेश को विपरीत कर दिया जाये अन्यथा गतिमान वस्तुओं पर एक अस्वीकार्य सिहरन 'कोम्ब' प्रभाव पड़ता है क्योकि वे आगे एक फील्ड में दिखाए जाते हैं और फिर वापस अगले पर कूद जाते हैं।
जहां गैर NTSC प्रगतिशील वीडियो को अंतर्वयन अथवा इसके विपरीत क्रम में ट्रांसकोड किया जाता है वहां यह खतरा भी बन गया है। सिस्टम जो प्रगतिशील फ्रेम्स को पुन: प्राप्त करते है या वीडियो को ट्रांसकोड करते हैं उन्हें यह सुनिश्चित करना चाहिए कि 'फ़ील्ड आदेश' माना जा रहा है, अन्यथा बरामद फ्रेम के पास एक फील्ड का एक फ्रेम और निकटवर्ती फ्रेम से एक फील्ड होगा, जिसके परिणामस्वरूप 'कोम्ब' अंतर्वयन शिल्पकृति उत्पन्न होगी. अगर एक अनुचित डि-इंटरलेसिंग एल्गोरिथ्म का चयन किया जाता है तो इसे आप अक्सर PC आधारित वीडियो खेल सुविधाओं में देख सकते हैं।
तुलनात्मक गुणवत्ता
अभिग्रहण समस्याएं, कलर सिग्नल का फेज परिवर्तित करके NTSC पिक्चर को खराब कर सकती हैं (वास्तव में अंतरीय फेज विरूपण), ताकि तस्वीर का रंग संतुलन तब तक बदलता रहेगा जब तक रिसीवर को क्षतिपूरक न कर दिया जाये. यह NTSC सेट्स पर टिंट नियंत्रण का समावेशन आवश्यक करता है, जो PAl अथवा SECAM सिस्टम पर आवश्यक नहीं है। विशिष्ट रूप से PAL की तुलना में, NTSC की रंग सटीकता और स्थिरता काफी कम है, जिसके कारण टेलीविजन इंजीनियर और वीडियो व्यवसायी NTSC को मजाक में नेवर दी सेम कलर, नेवर टवाईस दी सेम कलर अथवा नो ट्रू स्किन कलर कहते हैं।[१६] यह रंग फेज, "टिंट", या "रंग" नियंत्रण कला में कुशल किसी भी व्यक्ति को आसानी से SMPTE कलर बार्स के साथ मॉनिटर को व्यासमापन करने की अनुमति देता है, एक ऐसे सेट के साथ भी जो उचित रंगों के प्रदर्शन की अनुमति देकर अपने कलर प्रदर्शन में बह गया हो.
S-वीडियो सिस्टम्स में NTSC कोडेड कलर का उपयोग पूरी तरह से फेज विकृतियों को ख़त्म कर देता है। परिणाम स्वरूप, NTSC रंग एन्कोडिंग का उपयोग जब इस योजना के साथ किया जाता है तो यह तीन रंग प्रणाली का सर्वोच्च संकल्प चित्र गुणवत्ता (क्षैतिज अक्ष और फ्रेम दर) प्रदान करती है। (अनुलंब अक्ष पर NTSC संकल्प यूरोपीय मानकों, 625 के खिलाफ 525 लाइन, से कम है)
NTSC के 30 फ्रेम प्रति सेकण्ड और फिल्म के 24 फ्रेम प्रति सेकण्ड के मध्य अनुपयुक्त मेल को एक ऐसी प्रक्रिया द्वारा ठीक कर सकते है जो अंतर्वयन NTSC सिग्नल के फील्ड रेट पर लाभ उठाये, इस प्रकार 25 फ्रेम्स प्रति सेकण्ड पर वीडियो में कुछ जर्किनेस के साथ 576i सिस्टम्स के लिए उपयोग होने वाले फिल्म प्लेबैक स्पीडअप को अनदेखा कर सकते हैं (जो ऑडियो की पिच में थोड़ी वृद्धि कर देता है, कभी कभी जिसे पिच शिफ्टर का उपयोग करके सुधार जाता है). ऊपर फ्रेमरेट रूपांतरण देखें
विभेद
NTSC-M
PAL के विपरीत, दुनिया भर में इसके कई विभिन्न अंतर्निहित प्रसारण टेलीविजन सिस्टम्स उपयोग में है, NTSC रंग एन्कोडिंग प्रसारण प्रणाली M के साथ स्थिर रूप से उपयोग होती है, तथा NTSC-M प्रदान करती है।
NTSC-J
केवल जापान का विभेद "NTSC-J" थोड़ा अलग है: जापान में सिग्नल का काला स्तर और रिक्त स्तर समान (0 IRE पर) होता है क्योंकि वे PAL में होते हैं, जबकि अमेरिकी NTSC में काला स्तर रिक्त स्तर से की तुलना में थोड़ा अधिक (7.5 IRE) है चूंकि अंतर काफी छोटा है इसलिए किसी अन्य सेट पर सही प्रकार से NTSC के "अन्य" विभेद दिखाने के लिए चमक की घुंडी को हल्का सा घुमाना ही काफी है क्योंकि यह माना जाता है कि बहुत से दर्शक पहली बार में भी अंतर नोटिस नहीं कर पाते.
PAL-M
PAL-M सिस्टम NTSC के समान प्रसारण बैंडविड्थ, फ्रेम रेट, लाइनों की संख्या का उपयोग करता है, परन्तु PAL कलर एन्कोडिंग का उपयोग करता है। इसलिए यह आंशिक रूप से NTSC-संगत है। NTSC-M टीवी सेट स्थलीय PAl-M प्रसारण प्राप्त कर सकते हैं, NTSC VCRs PAL-M में दर्ज वीडियोटेप और इसके विपरीत भी खेल सकते हैं, लेकिन केवल काले और सफेद में क्योंकि रंग जानकारी को डिकोड नहीं किया जा सकता है।
PAL-N
इसे उरुग्वे और पराग्वे में प्रयोग किया जाता है। यह PAL-M (ब्राजील में उपयोग होने वाला) के बहुत समान है। यह PAL-Nc (अर्जेंटीना में उपयोग होने वाला) के भी बहुत समान है।
NTSC-M तथा NTSC-N की समानतायो को ITU पहचान योजना सारणी में देख सकते हैं, जो यहा दिखाई गयी है:
| वर्ग = "wikitable" सीमा = "1" cellpadding = "2" cellspacing = "2" चौड़ाई (= "100%" | + विश्व टेलीविजन प्रणाली |----- शैली = "पृष्ठभूमि-रंग: rgb (170, 160, 150);" ! प्रणाली (System) ! लाइन ! फ्रेम दर ! चैनल b/w ! दृश्य b/w ! ध्वनि ऑफसेट ! वेस्टिजियल साइडबैंड ! दृष्टि मोड. ! ध्वनि मोड. ! नोट्स |- align="center" | align="center" | M || 525 || 29.97 || 6 || 4.2 || +4.5 || 0.75 || Neg. | | FM | अमेरिकास और कैरिबियन, साउथ कोरिया, ताइवान, फिलिपीन्स (सभी NTSC-M) और ब्राजील (PAL-M) के अधिकांश. |- align="center" align="center" | N || 625 || 25 || 6 || 4.2 || +4.5 || 0.75 || Neg. | | FM | अर्जेंटीना, पराग्वे, उरुग्वे (सभी PAL-N). लाइनों की अधिक से अधिक संख्या परिणामस्वरूप उच्च गुणवत्ता प्रदान करती है। |)
जैसा कि दिखाया गया है, फ्रेम्स प्रति सेकंड और लाइनों की संख्या को छोड़कर सिस्टम्स समान हैं। NTSC-N/PAL-N/PAL-Nc गेम कंसोल, VHS/बेटामैक्स VCRs, तथा DVD प्लेयर्स जैसे स्रोतों के साथ अनुकूल हैं। हालांकि, वे बेसबैंड प्रसारण (जो एंटीना द्वारा प्राप्त किये जाते हैं) के साथ अनुकूल नहीं हैं, यद्यपि बेसबैंड NTSC 3.58 सपोर्ट के साथ कुछ नए सेट आये है (NTSC: 3.58 मेगाहर्ट्ज में NTSC 3.58 रंग अधिमिश्रण हेतु आवृत्ति है।
NTSC 4.43
PAL-60 का विपरीत माना जाना वाला NTSC 4.43 एक कृत्रिम रंग प्रणाली है जो 3.58 मेगाहर्ट्ज के बजाय 4.43 मेगाहर्ट्ज के कलर सबकैरियर के साथ NTSC कूटबन्धन (525/29.97) को स्थानांतरित करता है। परिणामस्वरूप प्राप्त हुआ उत्पादन केवल उसी टीवी पर देखा जा सकता है जो परिणामस्वरूप कृत्रिम-प्रणाली को सपोर्ट करता हो (आमतौर पर बहु मानक टीवी). रंग को डिकोड करने के लिए एक मूल NTSC टीवी का उपयोग कोई रंग उत्पन्न नहीं करता है, जबकि रंग को डिकोड करने के लिए एक PAL TV का उपयोग अनियमित रंग (यादृच्छिकता से हल्का लाल और टिमटिमाता हुआ दिखाई देता है) उत्पन्न करता है प्रारूप जाहिर तौर पर कुछ पूर्व लेजरडिस्क प्लेयर्स और बाजार में बिकने वाले कुछ गेम कंसोल्स के लिए सीमित है जहां PAL सिस्टम प्रयोग किया जाता है।
NTSC 4.43 प्रणाली, जबकि प्रसारण प्रारूप नहीं है, सोनी 3/4" U-Matic प्रारूप के साथ शुरुआत करके और फिर बेटामैक्स और VHS प्रारूप मशीनों का अनुसरण करते हुए PAL कैसेट प्रारूप VCRs के एक प्लेबैक फक्शन के रूप में अक्सर दिखाई देता है। जैसे हॉलीवुड विश्व के दर्शकों के लिए VCRs हेतु सबसे ज्यादा कैसेट सॉफ्टवेयर (टेलीविजन श्रृंखला और फिल्में) प्रदान करने का दावा करता है और चूंकि सभी कैसेट रिलीज PAL प्रारूप के रूप में उपलब्ध नहीं है, इसलिए NTSC प्रारूप वाली कैसेट को प्ले करने का साधन प्राप्त करना अत्यधिक आवश्यक था।
PAL,SECAM और NTSC वीडियो प्रारूपों में प्रसारित स्रोतों को समायोजित करने के लिए बहु मानक वीडियो मॉनिटर्स यूरोप में पहले से प्रयोग में थे। NTSC प्रारूप कैसेट को समायोजित करने के लिए U-माटिक, बेटामैक्स एवं VHS प्रक्रिया के तहत हेटरोडाइन रंग अपने आप को VCR प्लेयर्स के मामूली संशोधन के लिए प्रदान कर देता है। VHS का कलर-अंडर प्रारूप 629 kHz के सबकैरियर का उपयोग करता है जबकि U-मैटिक और बेटामैक्स NTSC और PAL दोनों प्रारूपों हेतु आयाम अधिमिश्रित क्रोमा सिग्नल को संचारित करने के लिए 688 kHz के सबकैरियर का उपयोग करते हैं। चूंकि VCR PAL रंग मोड और तेज रैखिक टेप गति का उपयोग करते हुए NTSC रिकॉर्डिंग के रंग भाग को प्ले करने के लिए तैयार था, इसलिए PAL के 50 हर्ट्ज फील्ड रेट को NTSC के 59.94 हर्ट्ज फील्ड रेट से बदलने के लिए PAL स्कैनर और हवीत गति को करना था।
PAL VCR में होने वाले परिवर्तन बहुत मामूली थे, इसका श्रेय मौजूदा VCR रिकॉर्डिंग प्रारूपों को जाता है। PAL अनुकूल हेत्रोदाइन रंग के साथ NTSC 4.43 मोड में NTSC कैसेट प्ले करते हुए VCR का परिणाम 525 lines/29.97 फ्रेम प्रति सेकंड होता है। बहु-मानक रिसीवर पहले से ही NTSC H एंड V आवृत्तियों को समर्थन देने के लिए सेट होता है, PAL रंग प्राप्त करते समय इसको बस इतना करने की जरूरत है।
उन बहु-मानक रिसीवर के अस्तित्व शायद डीवीडी की कोडिंग क्षेत्र के लिए ड्राइव का हिस्सा थे। चूंकि कलर सिग्नल्स सभी प्रदर्शन प्रारूपों के लिए डिस्क पर घटक हैं, इसलिए जब तक प्रदर्शन फ्रेम-रेट अनुकूल है तब तक NTSC (525/29.97) डिस्क प्ले करने के लिए PAL DVD प्लेयर्स में लगभग किसी परिवर्तन की आवश्यकता नहीं हैं।
NTSC-फिल्म
23.976 फ्रेम के फ्रेम रेट के साथ NTSC NTSC-फिल्म मानक में वर्णित हैसाँचा:category handler[<span title="स्क्रिप्ट त्रुटि: "string" ऐसा कोई मॉड्यूल नहीं है।">citation needed]
This section needs expansion. You can help by adding to it. (June 2008) |
कनाडा/अमेरिका वीडियो गेम क्षेत्र
कभी कभी NTSC-US या NTSC-U /C उत्तरी अमेरिका (U/C का मतलब है U.S. + कनाडा) के वीडियो गेम क्षेत्र का वर्णन करने के लिए उपयोग होता है, चूंकि आमतौर पर क्षेत्रीय तालाबंदी एक क्षेत्र के लिए जारी होने वाले खेलों को दूसरे क्षेत्र के लिए प्रतिबंधित कर देती हैं।
लम्बवत अंतराल संदर्भ
मानक NTSC वीडियो छवि में कुछ रेखाए (प्रत्येक फिल्ड की 1-21 लाइन्स) ऐसी हो सकती हैं जो दिखाई न दे (इसे लम्बवत रिक्त अंतराल या VBI के नाम से जाना जाता है); सभी छवि DEKHNE योग्य छवि के किनारे से परे हैं, लेकिन केवल लाइन्स 1-9 ऊर्ध्वाधर-सिंक और समान पल्स के लिए उपयोग की जाती है। शेष लाइनों को जानबूझ कर मूल NTSC विनिर्देशन में रिक्त रखा गया था जिससे CRT आधारित स्क्रीन में इलेक्ट्रॉन बीम के लिए समय प्रदान किया जा सके और प्रदर्शन के शीर्ष पर वापसी की जा सके.
VIR (या लम्बवत अंतराल संदर्भ), व्यापक रूप से 1980 के दशक में अपनाया गया, लाइन 19 पर लुमिनांस और क्रोमिनेंस स्तरों के लिए स्टूडियो-सम्मिलित संदर्भ डाटा जोड़कर NTSC वीडियो के साथ होने वाली कुछ रंग समस्याओं को सही करने का प्रयास करता है।[१७] फिर उपयुक्त-सुसज्जित टीवी सेट इन आंकड़ों को उपयोग कर सकते हैं जिससे मूल स्टूडियो छवि के एक निकटवर्ती मिलान हेतु प्रदर्शन को समायोजित कर सके. वास्तविक VIR सिग्नल तीन वर्गों को शामिल करता है, पहले वाले का लुमिनांस 70 प्रतिशत तथा कलर बर्स्ट सिग्नल के समान क्रोमिनेंस और अन्य दो का लुमिनांस क्रमशः 50 प्रतिशत और 7.5 प्रतिशत होता है।[१८]
भूत (बहुपथ हस्तक्षेप) हटाने वाली क्षमताओं के साथ GCR, VIR का एक कम-उपयोग किया गया उत्तराधिकारी है।
शेष लम्बवत रिक्त अंतराल रेखाए आमतौर पर डाटाकास्टिंग या सहायक डाटा हेतु उपयोग होती हैं जैसे वीडियो संपादन टाइमस्टैम्प्स (लाइन्स 12-14[१९][२०] पर लम्बवत अंतराल टाइमकोड्स या SMPTE टाइमकोड्स), लाइन्स 17-18 पर डाटा का परीक्षण, लाइन 20 नेटवर्क स्रोत कोड और बंद अनुशीर्षक, XDS और लाइन 21 पर V-चिप डाटा. पूर्व टेलीटेक्स्ट अनुप्रयोग भी लम्बवत रिक्त अंतराल लाइन्स 14-18 और 20 का उपयोग करते थे, लेकिन NTSC पर टेलीटेक्स्ट दर्शकों द्वारा व्यापक रूप से कभी नहीं अपनाया गया था।[२१]
कई स्टेशन VBI लाइन्स पर इलेक्ट्रॉनिक प्रोग्राम गाइड हेतु टीवी गाइड ऑन स्क्रीन (TVGOS) डाटा संचारित करते हैं। बाजार में एक प्राथमिक स्टेशन डाटा की 4 लाइन प्रसारित करेगा और बैकअप स्टेशन 1 लाइन प्रसारित करेगा. ज्यादातर बाजारों में PBS स्टेशन प्राथमिक मेजबान है। TVGOS डाटा 10 से लेकर 25 तक किसी भी लाइन पर कब्जा कर सकते हैं लेकिन अभ्यास में यह 11-18, 20 और लाइन 22 तक सीमित है। लाइन 22 केवल 2 प्रसारण, DirecTV और CFPL-TV हेतु उपयोग होती है।
TiVo डाटा भी कुछ विज्ञापनों में और विज्ञापन कार्यक्रम में प्रसारित होता है ताकि ग्राहक विज्ञापित किये जा रहे कार्यक्रम को स्वत: रिकॉर्ड कर सके.
NTSC का उपयोग करने वाले देश और प्रदेश
उत्तर अमेरिका
- साँचा:flagcountryअगस्त 2011 तक परित्यक्त होने वाला ओवर-दी-एयर NTSC प्रसारण अनुसूचित, ATSC में सिमुल्कास्ट[२२]
- साँचा:flagcountry31 दिसम्बर 2022 तक परित्यक्त होने वाला ओवर-दी-एयर NTSC प्रसारण अनुसूचित, ATSC में सिमुल्कास्ट[२३]
- साँचा:flagcountryउच्च शक्ति वाले ओवर-दी-एयर NTSC प्रसारण को ATSC के पक्ष में 12 जून,2009[२४][२५] को बंद कर दिया गया था। कम पावर स्टेशन, क्लास A स्टेशन और अनुवादक और न ही शेष एनालॉग केबल टेलीविजन सिस्टम्स एकदम से प्रभावित नहीं होते हैं। NTSC A/V उपकरणों जैसे टेलीविजन और DVD प्लेयर्स हेतु अंत:संयोजन मानक की तरह भी उपयोग में रहता है।
मध्य अमेरिका और कैरेबियन
साँचा:col-begin साँचा:col-break
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- लीवर्ड द्वीप
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry(U.S.)
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagiconU.S. वर्जिन द्वीप
दक्षिण अमेरिका
साँचा:col-begin साँचा:col-break
- साँचा:flagcountry
- साँचा:flagcountryNTSC प्रसारण 2019 तक परित्यक्त होने वाला, सिमुल्कास्टिंग DVB-T
- साँचा:flagcountryNTSC प्रसारण 31 दिसम्बर 2017 तक परित्यक्त होने वाला, सिमुल्कास्टिंग ISDB-T/b
- साँचा:flagcountryNTSC प्रसारण 31 दिसम्बर 2017 तक परित्यक्त होने वाला, सिमुल्कास्टिंग ISDB-T/b
- साँचा:flagcountry
- साँचा:flagcountry
एशिया
साँचा:col-begin साँचा:col-break
- साँचा:flagcountry (1972-1993)
- साँचा:flagcountryNTSC प्रसारण दिसंबर 2012 तक परित्यक्त होने वाला, सिमुल्कास्टिंग ATSC
- साँचा:flagiconचीन गणराज्य (ताइवान), NTSC प्रसारण 2012 तक परित्यक्त होने वाला, सिमुल्कास्टिंग DVB-T
- साँचा:flagicon म्यांमार के संघ (बर्मा)
- साँचा:flagcountryNTSC प्रसारण दिसंबर 2015 तक परित्यक्त होने वाला, सिमुल्कास्टिंग ISDB या DVB-B
साँचा:col-break अन्य :
- साँचा:flagcountry(प्रचार स्टेशन के उद्देश्य से दक्षिण कोरिया में, घरेलू प्रसारण PAL का उपयोग करें)
- साँचा:flagcountry (ऐतिहासिक, कंबोडिया अब PAL का उपयोग करता है)
- साँचा:flagcountry (ऐतिहासिक, एकीकृत वियतनाम SECAM और NTSC सिमुल्कास्ट का उपयोग करता है)
- साँचा:flagcountryपूर्व थाई TV चैनल 4 बैंगकुनब्रोह्मा द्वारा प्रयोग किया जाता था; 1960 के दशक के अंत से PAL का उपयोग होने लगा है।
पैसफ़िक
अमेरिका के राज्य क्षेत्र
- साँचा:flagcountry
- साँचा:flagcountry
- साँचा:flagicon उत्तरी मारियाना द्वीप
- मिडवे एटोल (एक अमेरिकी सैन्य अड्डा)
चिली के राज्य क्षेत्र
- साँचा:flagcountryNTSC प्रसारण 31 दिसम्बर 2017 तक परित्यक्त होने वाला, सिमुल्कास्टिंग ISDB-T/b
अन्य प्रशांत द्वीप के राष्ट्र
- साँचा:flagcountry(अमेरिका के साथ नि:शुल्क संगठन में सघन; अमेरिकी सहायता द्वारा वित्त पोषित NTSC)
- साँचा:flagicon अमेरिका के साथ [[नि:शुल्क संगठन में सघन (माइक्रोनेशिया)|नि:शुल्क संगठन में सघन (माइक्रोनेशिया)]]
- साँचा:flagcountryअमेरिका के साथ नि:शुल्क संगठन में सघन, स्वतंत्रता से पहले अपनाया NTSC)
- साँचा:flagcountry(अमेरिकन समोआ से बहुत नजदीकी से बंधा हुआ, अमेरिकी सहायता द्वारा वित्त पोषित NTSC)
- साँचा:flagcountry(अमेरिकी सहायता द्वारा वित्त पोषित NTSC)
ऐतिहासिक (PAL को स्वीकार करने से पहले NTSC का प्रयोगात्मक प्रयोग किया गया)
- साँचा:flagcountry(ऐतिहासिक, 1989 से पहले उपयोग किया गया है, फिजी ने 1990 से PAL का इस्तेमाल किया है)
- साँचा:flagcountry(ऐतिहासिक, पूर्ण ऑस्ट्रेलिया PAL का उपयोग करता है)
हिंद महासागर
मध्य पूर्व
- साँचा:flagcountry(ऐतिहासिक, पूर्ण यमन अब PAL का उपयोग करता है)
यूरोप
- साँचा:flagcountry(625/50Hz और 1960 में PAL कलर के प्रस्तुत होने से पहले UK TV 405-लाइन 50Hz सिस्टम था।)
इन्हें भी देखें
- प्रसारण टेलीविजन सिस्टम
- वीडियो कनेक्टर्स की सूची
- छवि प्रारूप स्थानांतरण
- पुराना टेलीविजन स्टेशन
- टीवी चैनल आवृत्तियां
- प्रसारण सुरक्षित
- संयुक्त राज्य अमेरिका में DTV संक्रमण
नोट्स
- ↑ नैशनल टेलीवीज़न सिस्टम कमिटी (1951–1953), (रिपोर्ट और पैनेल नंबर 11, 11-A, 12-19, के रिपोर्ट और साथ में रिपोर्टों में उद्धृत कुछ अनुपूरक सन्दर्भ और फेडरल कम्युनिकेशंस कमीशन से पहले कलर टेलीविज़न के ट्रांसमिशन मानकों के ग्रहण की याचिका, n.p., 1953], 17 दृश्य, दृष्टान्त, रेखाचित्र, तालिका, 28 सेमी. LC नियंत्रण नंबर: 54021386 लाइब्रेरी ऑफ़ कौंग्रेस ऑनलाइन कैटलॉग स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है।
- ↑ कलर टेलीविज़न इंक. (CTI) से एक तीसरे "लाइन अनुक्रमिक" सिस्टम पर भी विचार किया गया। CBS और अंतिम NTSC सिस्टम को क्रमशः "फील्ड अनुक्रमिक" और "डॉट अनुक्रमिक" सिस्टम कहा जाता था।
- ↑ "कलर टीवी को एक डिफेन्स स्टेप के रूप स्थगित किया गया", द न्यूयॉर्क टाइम्स, 20 अक्टूबर 1951, पृष्ठ 1. "कलर टीवी के स्थगन में डिफेन्स मोबिलाइज़र के कार्रवाई उद्योग के लिए कई सवाल खड़े करता है", द न्यूयॉर्क टाइम्स, 22 अक्टूबर 1951, पृष्ठ 23. "कलर के टीवी रिसर्च प्रतिबन्ध से परहेज किया गया", द न्यूयॉर्क टाइम्स, 26 अक्टूबर 1951. एड रिटन, CBS फील्ड सिक्वेंशियल कलर सिस्टम स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है।, 1997. CBS सिस्टम की एक भिन्न रूप को बाद में NASA द्वारा अंतरिक्ष से अंतरिक्ष यात्रियों की तस्वीरों का प्रसारण करने के लिए इस्तेमाल किया गया।
- ↑ "CBS कहते हैं भ्रम अब कलर टीवी को रोकता है," वॉशिंगटन पोस्ट, 26 मार्च 1953, पृष्ठ 39.
- ↑ "FCC के शासन में कलर टीवी का प्रसारण तुरंत हो सकता है", द न्यूयॉर्क टाइम्स, 19 दिसम्बर 1953, पृष्ठ 1.
- ↑ "NBC प्रथम सार्वजनिक रूप से घोषित कलर टेलीविज़न शो प्रस्तुत करता है", वॉल स्ट्रीट जर्नल, 31 अगस्त 1953, पृष्ठ 4.
- ↑ 47 CFR § 73.682 (20) (iv)
- ↑ अ आ इ डिमार्श, लेरॉय (1993): टीवी डिस्प्ले फोस्फोर्स/प्राइमरीज़ — कुछ इतिहास. SMPTE जर्नल, दिसम्बर 1993: 1095-1098.
- ↑ पार्कर, एन. डब्ल्यू. (1966): गैर-मानक प्राइमरीज़ के साथ कलर रिसीवर ऑपरेशन के लिए आवश्यक रिसीवर डिकोडर सुधार का एक विश्लेषण. प्रसारण और टेलीविजन रिसीवरों पर IEEE लेनदेन, वॉल्यूम BTR-12, नंबर 1, पीपी. 23-32.
- ↑ अ आ इ इंटरनैशनल टेलीकम्युनिकेशंस यूनियन रिकमेन्डेशन ITU-R 470-6 (1970-1998): कॉनवेन्शनल टेलीविज़न सिस्टम्स, अनुलग्नक 2.
- ↑ सोसाइटी ऑफ़ मोशन पिक्चर एण्ड टेलीविज़न इंजीनियर्स (1987-2004): रिकमेंडेड प्रैक्टिस RP 145-2004. कलर मॉनिटर कलरिमेट्री.
- ↑ सोसाइटी ऑफ़ मोशन पिक्चर एण्ड टेलीविज़न इंजीनियर्स (1994, 2004): इंजीनियरिंग गाइडलाइन EG 27-2004. SMPTE 170M की अनुपूरक सूचना और NTSC कलर मानकों के विकास की पृष्ठभूमि, पीपी. 9
- ↑ अडवांस्ड टेलीविज़न सिस्टम्स कमिटी (2003): ATSC डाइरेक्ट-टु-होम सैटलाईट ब्रॉडकास्ट स्टैण्डर्ड डॉक. A/81, pp.18
- ↑ यूरोपियन ब्रॉडकास्टिंग यूनियन (1975) टेक. 3213-E.: E.B.U. स्टैण्डर्ड फॉर क्रोमेटिसिटी फॉर स्टूडियो मॉनिटर्स.
- ↑ CCIR रिपोर्ट 308-2 पार्ट 2 चैप्टर XII — मोनोक्रोम टेलीविज़न सिस्टम्स की विशेषताएं (1970 संस्करण).
- ↑ जैन, अनल के., फंडामेंटल्स ऑफ़ डिजिटल इमेज प्रोसेसिंग, अपर सैडल रिवर NJ: प्रेन्टिस हॉल, 1989, पृष्ठ 82.
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ कैनेडियन रेडियो-टेलीविज़न एण्ड टेलीकम्युनिकेशंस कमीशन (CRTC) प्रेस रिलीज़ मई 2007 स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है।
- ↑ ट्रांसिसियन ए TDT (ट्रांजीशन टु DT) स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है। (स्पेनिश)
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ साँचा:cite web
उल्लेख
- NTSC सिस्टम को परिभाषित करने वाले एक मानक को इंटरनैशनल टेलीकम्युनिकेशंस यूनियन द्वारा 1998 में "रिकमेन्डेशन ITU-R BT.470-7, कॉनवेन्शनल एनालॉग टेलीविज़न सिस्टम्स" शीर्षक के तहत प्रकाशित किया गया था। यह इंटरनेट पर सार्वजनिक रूप से उपलब्ध नहीं है, लेकिन इसे ITU से ख़रीदा जा सकता है।
- एड रिटन (1997). CBS फील्ड सिक्वेंशियल कलर सिस्टम.
बाहरी कड़ियाँ
- अमेरिका केबल टीवी चैनल आवृत्तियां
- TVTower.com - वाणिज्यिक टेलीविजन प्रसारण
- एक टेलीविजन और एक डीवीडी पर NTSC ताज़ा दर का प्रतिनिधित्व
- वीडियो TV-RF सिग्नलों की समझ और मापन, ग्लेन क्रोपुएंस्क, CET, सेनकोर एप्लीकेशन इंजीनियर
- मैक पर PAL DVD को NTSC DVD में बदलें
साँचा:TV resolution साँचा:Video formats साँचा:SMPTE standards
- Articles with hatnote templates targeting a nonexistent page
- Articles with unsourced statements from September 2008
- Articles with invalid date parameter in template
- Articles with unsourced statements from May 2009
- Articles to be expanded from June 2008
- All articles to be expanded
- Articles using small message boxes
- Color space
- वीडियो प्रारूप
- टेलीविजन तकनीक
- ITU-R सिफारिशें