हरात्मक श्रेढी
नेविगेशन पर जाएँ
खोज पर जाएँ
गणित में किसी समान्तर श्रेढ़ी के पदों के ब्युत्क्रम (reciprocals) से बनी श्रेणी को हरात्मक श्रेढी कहते हैं। दूसरे शब्दों में,
- <math>a,\ \frac{a}{1+d},\ \frac{a}{1+2d},\ \frac{a}{1+3d}.</math>
जहाँ − 1/d प्राकृतिक संख्या (natural number) नहीं है। .
- उदाहरण
- 12, 6, 4, 3, <math>\tfrac{12}{5}</math>, 2, …, <math>\tfrac{12}{n}</math>
- 10, 30, −30, −10, −6, − <math>\tfrac{30}{7}</math>, …, <math>\tfrac{30}{5-2n}</math>
इन्हें भी देखें
- समान्तर श्रेढ़ी (Arithmetic progression)
- गुणोत्तर श्रेढ़ी (Geometric progression)