भौतिकी के सूत्र
नेविगेशन पर जाएँ
खोज पर जाएँ
एसआई उपसर्ग (प्रीफिक्स)
उपसर्ग | 10 पर घात के रूप में | दशमलव संख्या के रूप में | शब्दों में | स्वीकरण वर्ष[nb १] | |||
---|---|---|---|---|---|---|---|
नाम | संकेत | भारतीय नाम | यूरोपीय नाम | ||||
योट्टा (yotta) | Y | 1024 | साँचा:gaps | दस जल्द | quadrillion | 1991 | |
जेट्टा (zetta) | Z | 1021 | साँचा:gaps | अंक | trilliard | 1991 | |
एक्सा (exa) | E | 1018 | साँचा:gaps | दस शङ्ख | trillion | 1975 | |
पेटा (peta) | P | 1015 | साँचा:gaps | पद्म | billiard | 1975 | |
टेरा (tera) | T | 1012 | साँचा:gaps | दस खरब | billion | 1960 | |
जिगा (giga) | G | 109 | साँचा:gaps | अरब | milliard | 1960 | |
मेगा (mega) | M | 106 | साँचा:gaps | दस लाख | million | 1873 | |
किलो (kilo) | k | 103 | साँचा:gaps | सहस्र/हजार | thousand | 1795 | |
हेक्टो (hecto) | h | 102 | 100 | शत/सौ | hundred | 1795 | |
डेका (deca) | da | 101 | 10 | दस | ten | 1795 | |
100 | 1 | एक | one | – | |||
डेसी (deci) | d | 10−1 | 0.1 | दसवाँ | tenth | 1795 | |
सेन्टी (centi) | c | 10−2 | 0.01 | सौंवा | hundredth | 1795 | |
मिली (milli) | m | 10−3 | 0.001 | हजारवाँ | thousandth | 1795 | |
माइक्रो (micro) | μ | 10−6 | साँचा:gaps | दस-लाखवाँ | millionth | 1873 | |
नैनो (nano) | n | 10−9 | साँचा:gaps | अरबवाँ | billionth | 1960 | |
पिको (pico) | p | 10−12 | साँचा:gaps | दस-खरबवाँ | trillionth | 1960 | |
फेम्टो (femto) | f | 10−15 | साँचा:gaps | पद्मवाँ | billiardth | 1964 | |
आट्टो (atto) | a | 10−18 | साँचा:gaps | दस-शंखवाँ | trillionth | 1964 | |
जेप्टो (zepto) | z | 10−21 | साँचा:gaps | महाउपाधवाँ | trilliardth | 1991 | |
योक्टो (yocto) | y | 10−24 | साँचा:gaps | माधवाँ | quadrillionth | 1991 | |
|
आधारभूत यांत्रिकी (Fundamentals of Mechanics)
Foundational equations in translation and rotation.
Quantity | Translation | Rotation | ||||
---|---|---|---|---|---|---|
समय | <math>t</math> | <math>t</math> | ||||
स्थिति | <math>x </math> | <math>\theta </math> in radians | ||||
द्रव्यमान | <math>m</math> | <math>m</math> | ||||
समयान्तर | <math>\Delta t</math> | <math>\Delta t</math> | ||||
विस्थापन | <math>\Delta x</math> | <math>\Delta \theta</math> | ||||
द्रव्यमान संरक्षण | <math>\Delta m = 0 </math> | <math>\Delta m = 0 </math> | ||||
ऊर्जा संरक्षण | <math>\Delta E = 0 </math> | <math>\Delta E = 0 </math> | ||||
संवेग संरक्षण | <math>\Delta P = 0 </math> | <math>\Delta L = 0 </math> | ||||
वेग | <math> v = dx/dt </math> | <math>\omega = d\theta/dt </math> | ||||
त्वरण | <math> a = dv/dt </math> | <math>\alpha = d\omega/dt </math> | ||||
झटका | <math>j = da/dt </math> | <math>j = d\alpha/dt </math> | ||||
स्थितिज ऊर्जा परिवर्तन | <math>\Delta U = -W</math> | <math>\Delta U = -W</math> | ||||
संवेग | <math>P = mv </math> | <math>L = I\omega </math> <math> = | \mathbf{r} \times \mathbf{P} | = m | \mathbf{r} \times \mathbf{v} | </math> |
बल | <math>f = dP/dt = ma = -dU/dx </math> | <math>\tau = dL/dt = I\alpha </math> <math> = | \mathbf{r} \times \mathbf{f} | =m | \mathbf{r} \times \mathbf{a} | </math> |
जड़त्व आघूर्ण | <math>m = \int dm = \Sigma m_i</math> | <math>I = \int r^2 dm = \Sigma r^2m_i</math> | ||||
आवेग | <math>J=\int f dt</math> | <math>J=\int \tau dt</math> | ||||
कार्य | <math>W = \int f dx = \mathbf{d} \cdot \mathbf{f}</math> | <math>W = \int \tau d\theta </math> | ||||
शक्ति | <math> P = dW/dt = fv </math> | <math> P = dW/dt = \tau\omega</math> | ||||
गतिज ऊर्जा | <math>K = mv^2/2 = P^2/2m </math> | <math>K = I \ w^2 / 2 = \Sigma R^2m</math> | ||||
न्यूटन का तीसरा नियम | <math> f_{ab} = - f_{ba} </math> | <math>\tau_{ab} = -\tau_{ba} </math> |
Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:
- Wherever the force is zero, its potential energy is defined to be zero as well.
- Whenever the force does work, potential energy is lost.
स्थिर त्वरण (Constant acceleration)
Equations in translation and rotation, assuming constant acceleration.
भौतिक राशि | रेखीय गति | घुर्णन गति |
---|---|---|
विस्थापन | <math>\Delta v = at</math> | <math>\Delta \omega = \alpha t</math> |
समय | <math>\Delta(v^2) = 2a\Delta x</math> | <math>\Delta(\omega^2) = 2\alpha\Delta \theta</math> |
त्वरण | <math>\Delta x = t\Delta v/2</math> | <math>\Delta \theta = t\Delta \omega/2</math> |
प्रा०वेग | <math>\Delta x = -at^2/2 + v_2t</math> | <math>\Delta \theta = -\alpha t^2/2 + \omega_2t</math> |
अंतिमवेग | <math>\Delta x = +at^2/2 + v_1t</math> | <math>\Delta \theta = +\alpha t^2/2 + \omega_1t</math> |
एकसमान वृत्तीय गति (Uniform circular motion)
uniform circular motion angular to linear displacement | <math>x = \theta r</math> |
uniform circular motion angular to linear speed | <math>v = \theta \omega</math> |
uniform circular motion angular to linear acceleration normal component | <math>a_r = \omega^2r</math> |
uniform circular motion | <math>\mathbf{d} = \mathbf{i}cos\omega t + \mathbf{j}sin\omega t</math> |
uniform circular motion tangential speed | <math>\mathbf{v} = \mathbf{d}' = -\omega r (\mathbf{i}\sin\omega t - \mathbf{j}\cos\omega t)</math> |
uniform circular motion tangential component, scalar | <math>a_t = \alpha r</math> |
uniform circular motion centripetal acceleration | <math>\mathbf{a} = \mathbf{d} = -\omega^2\mathbf{d} = -v^2\mathbf{n}/r</math> |
uniform circular motion centripetal acceleration scalar | <math>\alpha=v^2/r</math> |
uniform circular motion centripetal force | <math>f = -mv^2/r</math> |
uniform circular motion revolution time | <math>T=2\pi r/v</math> |
Elasticity
elastic force, lies parallel to spring | <math>f = -kd</math> |
elastic potential energy | <math>U=kx^2/2</math> |
elastic work, positive when relaxes | <math>W = -k\Delta(x^2)/2</math> |
घर्षण (Friction)
normal force | <math>f_n = \mathbf{f}\cdot\mathbf{n}</math> |
static friction maximum, lies tangent to the surface | <math>f=\mu_sf_n</math> |
kinetic friction, lies tangent to the surface | <math>f=\mu_kf_n</math> |
drag force, tangent to the path | <math>f =\mu_d\rho a v^2/2</math> |
terminal velocity | <math>v_t=\sqrt{2fg/(\mu_d\rho A)}</math> |
friction creates heat and sound | <math>\Delta E = f_kd</math> |
प्रतिबाधा एवं विकृत्ति (Stress and strain)
stress | <math></math> |
strain | <math></math> |
modulus of elasticity | <math>\lambda = {stress}/{strain}</math> |
yield strength | <math></math> |
ultimate strength | <math></math> |
Young's modulus | <math>F/A = E\Delta L/L</math> |
shear modulus | <math>F/A = G\Delta x/L</math> |
bulk modulus | <math>F/A = B\Delta V/V</math> |
अन्य
inertial frames | <math>x_{PA} = x_{PB} + x_{AB}</math> |
. . . | <math>v_{PA} = v_{PB} + v_{AB}</math> |
. . . | <math>a_{PA} = a_{PB} + 0</math> |
trajectory | <math>y=x\tan\theta-gx^2/2(V_0\cos\theta)^2</math> |
flight distance | <math>v_0^2\sin{2\theta}/g</math> |
tension, lies within the cord | <math>f_t = f</math> |
mechanical energy | <math> E_{mec}=K + U</math> |
mechanical energy is conserved | <math> \Delta E_{mec} = 0</math> when all forces are conservative |
thrust | <math>t = Rv_{rel}=ma</math> |
ideal rocket equation | <math>\Delta v = ln(m_i/m_f)v_{rel}</math> |
parallel axis theorem | <math>I = I_{com} + mr^2</math> |
list of moments of inertia | |
indeterminate systems |
द्रब्यमान केन्द्र एवं संघट्ट (Center of mass and collisions)
center of mass COM | <math>\mathbf{r}_{com}=M^{-1}\Sigma m_i \mathbf{r}_i</math> |
. . . | <math>x_{com}=M^{-1}\int x dm, \cdots</math> |
for constant density: | <math>x_{com}=V^{-1}\int x dV, \cdots</math> |
COM is in all planes of symmetry | <math></math> |
elastic collision | <math>\Delta E_k = 0</math> |
inelastic collision | <math>\Delta E_k = </math>maximum |
conservation of momentum in a two body collision | <math>\mathbf{P}_{1i}+\mathbf{P}_{2i}=\mathbf{P}_{1f}+\mathbf{P}_{2f} </math> |
system COM remains inert | <math>\mathbf{v}_{com}={(\mathbf{P}_{1i}+\mathbf{P}_{2i})\over(M_1+M_2)} = const</math> |
elastic collision, 1D, M2 stationary | <math>v_{1f}={(m_1 - m_2)\over(m_1 + m_2)}v_{1i}</math> |
. . . | <math>v_{2f}={(2m_1)\over(m_1 + m_2)}v_{1i}</math> |
चिकने तल पर लुढ़कना (Smooth rolling)
rolling distance | <math>x_{arc}=R\theta</math> |
rolling distance ? | <math>x_{com}=R\alpha</math> |
rolling velocity | <math>v_{com}=R\omega</math> |
rolling ? | <math>K = I_{com}\omega^2/2 + Mv^2_{com}/2</math> |
rolling down a ramp along axis x | <math>a_{com,x}=-\frac{g\sin\theta}{1+I_{com}/MR^2}</math> |
उष्मागतिकी (Thermodynamics)
Zeroth Law of Thermodynamics | <math>(A = B) \land (B=C) \Rightarrow A=C</math> (where "=" denotes systems in thermal equilibrium |
First Law of Thermodynamics | <math>\Delta E_{int} = Q + W</math> |
Second Law of Thermodynamics | <math>\Delta S \ge 0</math> |
Third Law of Thermodynamics | <math>S = S_{structural} + CT</math> |
temperature | <math>T</math> |
molecules | <math>N</math> |
degrees of freedom | <math>f</math> |
heat | <math>Q</math>, <math>\Delta E</math> due to <math>\Delta T</math> (energy) |
thermal mass (extensive property) | <math>C_{th} = Q/\Delta T</math> |
specific heat capacity (bulk property) | <math>c_{th} = Q/\Delta Tm</math> |
enthalpy of vaporization | <math>L_v = Q/m</math> |
enthalpy of fusion | <math>L_f = Q/m</math> |
thermal conductivity | <math>\kappa</math> |
thermal resistance | <math>R=L/ \kappa</math> |
thermal conduction rate | <math>P = Q/t = A(T_H - T_C)/R</math> |
thermal conduction rate through a composite slab | <math>P = Q/t = A(T_H - T_C)/\Sigma(R_i)</math> |
linear coefficient of thermal expansion | <math> dL/dt = \alpha L</math> |
volume coefficient of thermal expansion | <math>dV/dt = 3 \alpha V </math> |
Boltzmann constant | <math>k</math> (energy)/(temperature) |
Stefan-Boltzmann constant | <math>\sigma</math> (power)/(area)(temp)^4 |
thermal radiation | <math>P = \sigma \epsilon A T ^4_{sys}</math> |
thermal absorption | <math>P = \sigma \epsilon A T ^4_{env}</math> |
adiabatic | <math>\Delta Q = 0 </math> |
ideal gas law | <math>PV = kTN</math> |
work, constant temperature | <math>W=kTNln(V_f/V_i)</math> |
work due to gas expansion | <math>W = \int_{i}^{f}pdV</math> |
. . . adiabatic | <math>\Delta E_{int} = W</math> |
. . . constant volume | <math>\Delta E_{int} = Q</math> |
. . . free expansion | <math>\Delta E_{int} = 0</math> |
. . . closed cycle | <math>Q + W = 0</math> |
work, constant volume | <math>W=0</math> |
work, constant pressure | <math>W=p\Delta V</math> |
translational energy | <math>E_{k,avg} = kTf/2</math> |
internal energy | <math>E_{int} = NkTf/2</math> |
mean speed | <math>v_{avg}= \sqrt{(kT/m)(8/\pi)}</math> |
mode speed | <math>v_{prb} = \sqrt{(kT/m)2}</math> |
root mean square speed | <math>v_{rms} = \sqrt{(kT/m)3}</math> |
mean free path | <math>\lambda = 1/(\sqrt{2} \pi d^2 N / V)</math>? |
Maxwell–Boltzmann distribution | <math>P(v)=4\pi(m/(2\pi kT))^{3/2}V^2e^{-(mv^2/(2kT))}</math> |
molecular specific heat at a constant volume | <math>C_V = Q/(N\Delta T)</math> |
? | <math>\Delta E_{int} = NC_V \Delta T</math> |
molecular specific heat at a constant pressure | <math>C_p = Q/(N\Delta T)</math> |
? | <math>W = p \Delta V = Nk \Delta T</math> |
? | <math>k = C_p - C_V</math> |
adiabatic expansion | <math>pV^{\gamma} = constant</math> |
adiabatic expansion | <math>TV^{\gamma - 1} = constant</math> |
multiplicity of configurations | <math>W = N!/n_1!n_2!</math> |
microstate in one half of the box | <math>n_1, n_2</math> |
Boltzmann's entropy equation | <math>S = klnW</math> |
irreversibility | <math></math> |
entropy | <math>S = - k\sum_i P_i \ln P_i \!</math> |
entropy change | <math>\Delta S = \int_i^f(1/T)dQ \approx Q/T_{avg}</math> |
entropy change | <math>\Delta S = kNln(V_f/V_i) + NC_Vln(T_f/T_i)</math> |
entropic force | <math>f = -TdS/dx</math> |
engine efficiency | W|/|Q_H|</math> |
Carnot engine efficiency | Q_H|-|Q_L|)/|Q_H| = (T_H-T_L)/T_H</math> |
refrigeration performance | Q_L|/|W|</math> |
Carnot refrigeration performance | Q_L|/(|Q_H|-|Q_L|) = T_L/(T_H-T_L)</math> |
तरंग
torsion constant | <math>\kappa = -\tau / \theta</math> |
phasor | <math></math> |
node | <math></math> |
antinode | <math></math> |
period | <math>T</math> |
amplitude | <math>x_m</math> |
decibel | <math>dB</math> |
frequency | <math>f = 1/T = \omega /(2\pi)</math> |
angular frequency | <math>\omega = 2\pi f = 2\pi / T</math> |
phase angle | <math>\phi</math> |
phase | <math>(\omega t + \phi)</math> |
damping force | <math>f_d = -bv</math> |
phase | <math>ky -\omega t</math> |
wavenumber | <math>k</math> |
phase constant | <math>\phi</math> |
linear density | <math>\mu</math> |
harmonic number | <math>n</math> |
harmonic series | <math>f = v/\lambda = nv/(2L) </math> |
wavelength | <math>\lambda = k/(2\pi)</math> |
bulk modulus | <math>B = \Delta p /(\Delta V / V)</math> |
path length difference | <math>\Delta L</math> |
resonance | <math>\omega_d = \omega</math> |
phase difference | <math>\phi = 2 \pi \Delta L / \lambda </math> |
fully constructive interference | <math>\Delta L/\lambda = n</math> |
fully destructive interference | <math>\Delta L/\lambda = n+0.5</math> |
sound intensity | <math>I = P/A = \rho v \omega^2 s^2_m/2</math> |
sound power source | <math>P_s</math> |
sound intensity over distance | <math>I = P_s/(4\pi r^2)</math> |
sound intensity standard reference | <math>I_0</math> |
sound level | <math>\Beta = (10 dB)log(I/I_0)</math> |
pipe, two open ends | <math>f=v/\lambda = nv/(2L)</math> |
pipe, one open end | <math>f = v/\lambda = nv/(4L)</math> for n odd |
beats | <math>s(t) = [2s_m\cos\omega ' t ] \cos \omega t</math> |
beat frequency | <math>f_{beat} = f_1 - f_2</math> |
Doppler effect | <math>f' = f(v+-v_D)/(v+-v_S)</math> |
sonic boom angle | <math>\sin \theta = v/v_s</math> |
average wave power | <math>P_{avg}=\mu v \omega^2 x_m^2/2</math> |
pressure amplitude | <math>\Delta p_m = (v\rho \omega)x_m</math> |
wave equation | <math>\frac{\partial y}{\partial x^2} = \frac{1}{v^2} \frac{\partial ^2 y}{\partial t^2}</math> |
wave superposition | <math>x'(y,t) = x_1(y,t) + x_2(y,t)</math> |
wave speed | <math>v = \omega/k = \lambda/T = \lambda f</math> |
speed of sound | <math>v = \sqrt{B/ \rho }</math> |
wave speed on a stretched string | <math>v=\sqrt{f_t/\mu}</math> |
angular frequency of an angular simple harmonic oscillator | <math>\omega = \sqrt{I/\kappa}</math> |
angular frequency of a low amplitude simple pendulum | <math>\omega = \sqrt{L/g}</math> |
angular frequency of a low amplitude physical pendulum | <math>\omega = \sqrt{I/mgh}</math> |
angular frequency of a linear simple harmonic oscillator | <math>\omega = \sqrt{k/m} </math> |
angular frequency of a linear damped harmonic oscillator | <math>\omega ' = \sqrt{(k/m)-(b^2/4m^2)}</math> |
wave displacement | <math>x(t)=x_m\cos(\omega t + \phi)</math> |
wave displacement when damped | <math>x(t)=x_m\cos(\omega 't+\phi)(e^{-bt/2m})</math> |
wave velocity | <math>v(t)=x_m\sin(\omega t + \phi)(- \omega)</math> |
wave acceleration | <math>a(t)=x_m\cos(\omega t + \phi)(- \omega^2 )</math> |
transverse wave | <math>x(y,t) = x_m\sin(ky-\omega t)</math> |
wave traveling backwards | <math>x(y,t) = x_m\sin(ky+\omega t)</math> |
resultant wave | <math>x'(y,t) = x_m\sin(ky-\omega t + \phi/2)(2\cos\phi/2)</math> |
standing wave | <math>x'(y,t) = \cos(\omega t)(2y\sin ky)</math> |
sound displacement function | <math>x(y,t) = x_m\cos(ky-\omega t)</math> |
sound pressure-variation function | <math>\Delta p(y,t) = \sin(ky-\omega t)\Delta p_m</math> |
potential harmonic energy | <math>E_U(t) = kx^2/2 = kx_m^2\cos^2(\omega t + \phi)/2</math> |
kinetic harmonic energy | <math>E_K(t) = kx^2/2 = kx_m^2\sin^2(\omega t + \phi)/2</math> |
total harmonic energy | <math>E(t) = kx_m^2/2 = E_U + E_K</math> |
damped mechanical energy | <math>E_{mec}(t) = ke^{-bt/m}x^2_m/2</math> |
गुरुत्वाकर्षण (Gravitation)
gravitational constant | <math>G</math> (force)(distance/mass)^2 |
gravitational force | <math>f_G = Gm_1m_2/r^2</math> |
superposition applies | <math>\mathbf{F} = \Sigma \mathbf{F}_i = \int d\mathbf{F}</math> |
gravitational acceleration | <math>a_g = Gm/r^2</math> |
free fall acceleration | <math>a_f = a_g - \omega^2R</math> |
shell theorem for gravitation | |
potential energy from gravity | <math>U = -Gm_1m_2/r \approx ma_gy</math> |
escape speed | <math>v = \sqrt{2Gm/r}</math> |
Kepler's law 1 | planets move in an ellipse, with the star at a focus |
Kepler's law 2 | <math>A = 0</math> |
Kepler's law 3 | <math>T^2 = (4\pi^2/Gm)r^3</math> |
orbital energy | <math>E = - Gm_1m_2/a2</math> |
standard gravity | <math> a_g = Gm_{Earth}/r_{Earth}^2 \approx 9.81m/s^2</math> |
weight, points toward the center of gravity | <math>f_g = -f_n = mg </math> |
path independence | <math>W_{ab,1}=W_{ab,2}=\cdots</math> |
Einstein field equations | <math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math> |
तरलगतिकी (Fluid dynamics)
density | <math>\rho = \Delta m / \Delta V</math> |
pressure | <math>p = \Delta F / \Delta A</math> |
pressure difference | <math>\Delta p = \rho g\Delta y</math> |
pressure at depth | <math>p = p_0 + \rho gh</math> |
barometer versus manometer | <math></math> |
Pascal's principle | <math></math> |
Archimedes' Principle | <math></math> |
buoyant force | <math>F_b = m_fg</math> |
gravitational force when floating | <math>F_g = F_b</math> |
apparent weight | <math>weight_{app} = weight - F_b</math> |
ideal fluid | <math></math> |
equation of continuity | <math>R_V = Av =</math> constant |
Bernoulli's equation | <math>p + \rho v^2/2 + \rho gy =</math> constant |
विद्युतचुम्बकत्व (Electromagnetism)
Lorentz force | <math>\mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B})</math> |
Gauss' law | <math>\oint\mathbf{E}\cdot d \mathbf{A} = \Phi_E = q_{enc}/\epsilon_0</math> |
Gauss' law for magnetic fields | <math>\oint \mathbf{B} \cdot d \mathbf{A} = \Phi_B = 0</math> |
Faraday's law of induction | <math>\oint\mathbf{E}\cdot d\mathbf{s} = -d\Phi_B/dt = -\mathcal{E}</math> |
Ampere-maxwell law | <math>\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0(i_{enc} + i_{d,enc})</math> |
elementary charge | <math>e</math> |
electric charge | <math>q = ne</math> |
conservation of charge | <math>\Delta q = 0</math> |
linear charge density | <math>\lambda = q/l^1</math> |
surface charge density | <math>\sigma = q/l^2</math> |
volume charge density | <math>\rho = q/l^3</math> |
electric constant | <math>\epsilon_0</math> (time)^2(charge)^2/(mass)(volume) |
magnetic constant | <math>\mu_0</math> (force)(time)^2/(charge)^2 |
Coulomb's law | <math>F = q_1q_2/(4\pi\epsilon_0)r^2</math> |
electric field | <math>\mathbf{E} =\mathbf{F}/q</math> |
electric field lines | end at a negative charge |
Gaussian surface | <math>\mathbf{A}</math> |
flux notation implies a normal unit vector | <math>\cdot d \mathbf{A} \to \cdot \mathbf{n} d \mathbf{A}</math> |
electric flux | <math>\Phi_E = \oint\mathbf{E}\cdot d \mathbf{A}</math> |
magnetic flux | <math>\Phi_B = \int \mathbf{B}\cdot d\mathbf{A}</math> |
magnetic flux given assumptions | <math>\Phi_B = BA</math> |
dielectric constant | <math>\kappa \ge 1</math> |
dielectric | <math>\epsilon_0 \to \epsilon_0\kappa</math> |
Gauss' law with dialectric | <math>q_{enc} = \epsilon_0 \oint \kappa\mathbf{E}\cdot d \mathbf{A}</math> |
Biot-Savart law | <math> \mathbf{B} = \int\frac{\mu_0}{4\pi}\ \frac{(id\mathbf{s}) \times \mathbf{r}}{r^3},</math> |
Lenz's law | induced current always opposes its cause |
inductance (with respect to time) | <math>L=-\mathcal{E}/q</math> |
inductance from coils | <math>L=N\Phi_B/i</math> |
inductance of a solenoid | <math>L/l=\mu_0n^2A</math> |
displacement current | <math>i_d = \epsilon_0 d\Phi_E/dt</math> |
displacement vector | <math>\mathbf{d}</math> |
electric dipole moment | <math>\mathbf{p} = q\mathbf{d}</math> |
electric dipole torque | <math>\mathbf{\tau}=\mathbf{p}\times\mathbf{E}</math> |
electric dipole potential energy | <math>U = -\mathbf{p}\cdot\mathbf{E}</math> |
magnetic dipole moment of a coil, magnitude only | <math>\mu=iNA</math> |
magnetic dipole moment torque | <math>\mathbf{\tau}=\mathbf{\mu}\times\mathbf{B}</math> |
magnetic dipole moment potential energy | <math>U=-\mathbf{\mu}\cdot\mathbf{B}</math> |
electric field accelerating a charged mass | <math>a = qE/m</math> |
electric field of a charged point | <math>E = q / \epsilon_0 4 \pi r^2 \hat{r} </math> |
electric field of a dipole moment | <math>E = p / \epsilon_0 2 \pi z^3 </math> |
electric field of a charged line | <math>E = \lambda / \epsilon_0 2\pi r</math> |
electric field of a charged ring | <math>E = qz/\epsilon_04\pi(z^2 + R^2)^{3/2}</math> |
electric field of a charged conducting surface | <math>E = \sigma / \epsilon_0</math> |
electric field of a charged non-conducting surface | <math>E = \sigma /\epsilon_0 2</math> |
electric field of a charged disk | <math>E = \sigma (1 - z)/ \epsilon_0 2 \sqrt{z^2 + R^2}</math> |
electric field outside spherical shell r>=R | <math>E = q/\epsilon_0 4 \pi r^2</math> |
electric field inside spherical shell r<R | <math>E = 0</math> |
electric field of uniform charge r<=R | <math>E = qr/\epsilon_0 4 \pi R^3</math> |
electric field energy density | <math>u = \epsilon_0 E^2/2</math> |
electric potential versus electric potential energy | (energy)/(charge) versus (energy) |
electric potential energy | <math>U = - W_{\infty}</math> |
electric potential | <math>V = -W_{\infty}/q = U/q</math> |
electric potential difference | <math>\Delta V = -W/q = \Delta U/q</math> |
electric potential from electric field | <math>\Delta V = -\int_i^f \mathbf{E}\cdot d\mathbf{s}</math> |
electric field from electric potential | <math>\nabla V = -\mathbf{E}</math> |
electric potential of a charged point | <math>V = q/\epsilon_0 4 \pi r</math> |
electric potential of a set of charged points | <math>V = \Sigma V_i = (1/\epsilon_0 4 \pi) \Sigma q_i/r_i</math> |
electric potential of a dipole | <math>V = p\cos\theta/\epsilon_0 4 \pi r^2</math> |
electric potential of continuous charge | <math>V = \int dV = (1/\epsilon_0 4 \pi)\int dq/r</math> |
electric potential energy of a pair of charged points | <math>Vq_2 = U = W = q_1q_2/\epsilon_04\pi r</math> |
capacitance | <math>C = q/V</math> (charge)^2/(energy) |
capacitance of parallel plates | <math>C = \epsilon_0A/d</math> |
capacitance of a cylinder | <math>C = \epsilon_0 2 \pi L/\ln(b/a)</math> |
capacitance of a sphere | <math>C = \epsilon_0 4 \pi ba/(b-a)</math> |
capacitance of an isolated sphere | <math>C = \epsilon_0 4 \pi R</math> |
capacitors in parallel | <math>C_{eq}^{+1} = \Sigma C_i^{+1}</math> |
capacitors in series | <math>C_{eq}^{-1} = \Sigma C_i^{-1}</math> |
capacitor potential energy | <math>U=q^2/C2 = CV^2/2</math> |
current | <math>i = dq/dt</math> |
drift speed | <math>\mathbf{v}_d</math> |
current density | <math>\mathbf{J} = ne\mathbf{v}_d/m^3</math> |
current density magnitude | <math>J = i/A</math> |
current density to get current | <math>i = \int JdA</math> |
resistance | <math>R = V/i</math> |
resistivity | <math>\rho = \mathbf{E}/\mathbf{J}</math> |
resistivity temperature coefficient | <math>\alpha</math> |
resistivity across temperature | <math>\rho - \rho_0 = \rho_0\alpha(T-T_0)</math> |
resistivity and resistance | <math>R A = \rho L</math> |
electrical conductivity | <math>\sigma = 1/\rho = \mathbf{J}/\mathbf{E}</math> |
resistor power dissipation | <math>P = i^2R = V^2/R</math> |
internal resistance | <math>i = \mathcal{E}/(R+r)</math> |
resistors in series | <math>R_{eq}^{+1}=\Sigma R_i^{+1}</math> |
resistors in parallel | <math>R_{eq}^{-1} =\Sigma R_i^{-1}</math> |
Kirchoff's current law | <math>i_{in} = i_{out}</math> |
Ohm's law | <math>V=iR</math> |
emf | <math>\mathcal{E} = dW/dq = iR</math> |
emf rules | loop, resistance, emf |
electrical power | <math>P=iV</math> |
emf power | <math>P_{emf} = i\mathcal{E}</math> |
electric potential difference across a real battery | <math>p = \mathcal{E} - iR</math> |
magnetic field force on a moving charge | <math>\mathbf{F}_B = q\mathbf{v}\times\mathbf{B}</math> |
magnetic field force on a current | <math>\mathbf{F}_B=i\mathbf{L}\times\mathbf{B}</math> |
Hall effect | <math>n = Bi/Vle</math> |
circulating charged particle | q|vB=mv^2/r</math> |
cyclotron resonance condition | <math>f = f_{osc}</math> |
magnetic field of a line | <math>B = \mu_0i/2\pi R</math> |
magnetic field of a ray | <math>B=\mu_0i/4\pi R</math> |
magnetic field at the center of a circular arc | <math>B=\mu_0i\phi/4\pi R</math> |
magnetic field of a solenoid | <math>B=\mu_0in</math> |
magnetic field of a toroid | <math>B=\mu_0iN/2\pi r</math> |
magnetic field of a current carrying coil | <math>\mathbf{B}=\mu_0\mathbf{\mu}/2\pi z^3</math> |
self induction of emf | <math>\mathcal{E}_L = -Ldi/dt</math> |
magnetic energy | <math>U_B=Li^2/2</math> |
magnetic energy density | <math>u_B=B^2/2\mu_0</math> |
mutual induction | <math>\mathcal{E}_1=-Mdi_2/dt,\mathcal{E}_2=-Mdi_1/dt</math> |
transformation of voltage | <math>V_s N_p = V_p N_s</math> |
transformation of current | <math>I_s N_s = I_p N_p</math> |
transformation of reistance | <math>R_{eq} = (Np/Ns)^2R</math> |
induced magnetic field inside a circular capacitor | <math>B = (\mu_0i_d/2\pi R^2)r</math> |
induced magnetic field outside a circular capacitor | <math>B = \mu_0i_d/2\pi rr</math> |
RC circuit ODE with respect to time | <math>Rq' + C^{-1}q=\mathcal{E}</math> |
RC circuit capacitive time constant | <math>\tau = RC</math> |
RC circuit charging a capacitor | <math>q = C\mathcal{E}(1-e^{-t/RC})</math> |
RL circuit ODE with respect to time | <math>Li+Ri'=\mathcal{E}</math> |
RL circuit time constant | <math>\tau_L=L/R</math> |
RL circuit rise of current | <math>i = \mathcal{E}/R(1-e^{-t/\tau_L})</math> |
RL circuit decay of current | <math>i=\mathcal{E}e^{-t/\tau_L}/R=i_0e^{-t/\tau_L}</math> |
LC circuit ODE with respect to time | <math>Lq+C^{-1}q = \mathcal{E}</math> |
LC circuit | <math>\omega = 1/\sqrt{LC}</math> |
LC circuit charge | <math>q = Qcos(\omega t + \phi)</math> |
LC circuit current | <math>i=-\omega Q sin(\omega t + \phi)</math> |
LC circuit electrical potential energy | <math>U_E=q^2/2C=Q^2cos^2(\omega t + \phi)/2C</math> |
LC circuit magnetic potential energy | <math>U_B=Q^2sin^2(\omega t + \phi)/2C</math> |
RLC circuit ODE with respect to time | <math>Lq + Rq' +C^{-1}q = \mathcal{E} </math> |
RLC circuit charge | <math>q = QeT^{-Rt/2L}cos(\omega't+\phi)</math> |
resistive load | <math>V_R=I_RR</math> |
capacitive load | <math>V_C = I_C X_C</math> |
inductive load | <math>V_L = I_L X_L</math> |
resistive reactance | <math>X_R = ?</math> |
capacitive reactance | <math>X_C = 1/\omega_d C</math> |
inductive reactance | <math>X_L = \omega_d L</math> |
phase constant | <math>tan\phi=X_L - X_C /R</math> |
electromagnetic resonance | <math>\omega_d = \omega = 1/\sqrt{LC}</math> |
AC current | <math>I_{rms}=I/\sqrt{2}</math> |
AC voltage | <math>V_{rms}=V/\sqrt{2}</math> |
AC emf | <math>\mathcal{E}_{rms}=\mathcal{E}_m/\sqrt{2}</math> |
AC power | <math>P_{avg}=\mathcal{E}I_{rms}cos\phi</math> |
प्रकाश (Light)
electric light component | <math>E = E_m sin(kx-\omega t)</math> |
magnetic light component | <math>B = B_m sin(kx-\omega t)</math> |
speed of light | <math>c = 1/\sqrt{\mu_0\epsilon_0} = E/B</math> |
Poynting vector | <math>\mathbf{S} = \mu_0^{-1}\mathbf{E}\times\mathbf{B}</math> |
Poynting vector magnitude | <math>S = EB/\mu_0 = E^2/c\mu_0</math> |
rms electric field of light | <math>E_{rms} = E/\sqrt{2}</math> |
light intensity | <math>I = E^2_{rms}/c\mu_0</math> |
light intensity at the sphere | <math>I = P_s/4\pi r^2</math> |
radiation momentum with total absorption (inelastic) | <math>\Delta p = \Delta U/c</math> |
radiation momentum with total reflection (elastic) | <math>\Delta p = 2 \Delta U/c</math> |
radiation pressure with total absorption (inelastic) | <math>p_r = I/c</math> |
radiation pressure with total reflection (elastic) | <math>p_r = 2I/c</math> |
intensity from polarizing unpolarized light | <math>I = I_0/2</math> |
intensity from polarizing polarized light | <math>I = I_0cos^2\theta</math> |
index of refraction of substance f | <math>n_f = c/v_f</math> |
angle of reflection | <math>\theta_1=\theta_2</math> |
angle of refraction | <math>n_1sin\theta_1 = n_2sin\theta_2</math> |
angle of total reflection | <math>\theta_c = sin^{-1}n_2/n_1</math> |
angle of total polarisation | <math>\theta_B = tan^{-1}n_2/n_1</math> |
image distance in a plane mirror | <math>d_i = -d_o</math> |
image distance in a spherical mirror | <math>n_1/d_o + n_2/d_i = (n_2 - n_1)/r</math> |
spherical mirror focal length | <math>f =r/2</math> |
spherical mirror | <math>1/d_o + 1/d_i = 1/f</math> |
lateral magnification m and h negative when upside down | <math>m=h_i/h_o = -d_i/d_o</math> |
lens focal length | <math>1/f = 1/d_o +1/d_i</math> |
lens focal length from refraction indexes | <math>1/f = (n_{lens}/n_{med}-1)(1/r_1 - 1/r_2)</math> |
path length difference | <math>\Delta L = d sin\theta</math> |
double slit minima | <math>d sin\theta = (N + 1/2)\lambda</math> |
double slit maxima | <math>d sin\theta = N\lambda</math> |
double-slit interference intensity | <math>I = 4I_0cos^2(\pi d sin\theta / \lambda)</math> |
thin film in air minima | <math>(N + 0/2)\lambda/n_2</math> |
thin film in air maxima | <math>2L = (N + 1/2)\lambda/n_2</math> |
single-slit minima | <math>a sin \theta = N\lambda</math> |
single-slit intensity | <math>I(\theta)=I_0(sin\alpha/\alpha)^2</math> |
double slit intensity | <math>I(\theta) = I_0(cos^2\Beta)(sin\alpha/\alpha)^2</math> |
. . . | <math>\alpha = \pi a sin\theta/\lambda</math> |
circular aperture first minimum | <math>sin\theta = 1.22\lambda/d</math> |
Rayleigh's criterion | <math>\theta_R = 1.22\lambda/d</math> |
diffraction grating maxima lines | <math>dsin\theta = N\lambda</math> |
diffraction grating half-width | <math>\Delta\theta_{hw} = \lambda/Ndcos\theta</math> |
diffraction grating dispersion | <math>D=N/d cos\theta</math> |
diffraction grating resolving power | <math>R=Nn</math> |
diffraction grating lattice distance | <math>d = N\lambda/2sin\theta</math> |
विशिष्ट आपेक्षिकता (Special Relativity)
Lorentz factor | <math>\gamma = 1/\sqrt{1-(v/c)^2}</math> |
Lorentz transformation | <math>t' = \gamma(t-xv/c^2)</math> |
. . . | <math>x'=\gamma(x-vt)</math> |
. . . | <math>y' = y</math> |
. . . | <math>z' = z</math> |
time dilation | <math>\Delta t = \gamma \Delta t_0</math> |
length contraction | <math>L = L_0/\gamma</math> |
relativistic Doppler effect | <math>f=f_0\sqrt{1-(v/c)/1+(v/c)}</math> |
Doppler shift | \Delta\lambda|c/\lambda_0</math> |
momentum | <math>\mathbf{p}=\gamma m\mathbf{v}</math> |
rest energy | <math>E_0 = mc^2</math> |
total energy | <math>E = E_0 + K = mc^2 + K = \gamma mc^2 = \sqrt{(pc)^2 + (mc^2)^2}</math> |
Energy Removed | <math>Q = -\Delta mc^2</math> |
kinetic energy | <math>K = E - mc^2 = \gamma mc^2 - mc^2 = mc^2(\gamma -1)</math> |
कण भौतिकी (Particle Physics)
standard model | see 4x4 chart of particles |
Planck's constant | <math>h</math>, in energy/frequency |
Reduced Planck's constant | <math>\hbar = h/2\pi</math>, in energy/frequency |
Planck–Einstein equation | <math>E = hf</math> |
threshold frequency | <math>f_0</math> |
work function | <math>\Phi = hf_0</math> |
photoelectric kinetic energy | <math>K_{max} = hf - \Phi</math> |
photon momentum | <math>p = hf/c = h/\lambda</math> |
de Broglie wavelength | <math>\lambda = h/p</math> |
Schrodinger's equation | <math>i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)</math> |
Schrodinger's equation one dimensional motion | <math>d^2\psi/dx^2 + 8\pi^2m[E-U(x)]\psi/h^2 = 0</math> |
Schrodinger's equation free particle | <math>d^2\psi/dx^2 + k^2\psi = 0</math> |
Heisenberg's uncertainty principle | <math>\Delta x \cdot \Delta p_x \ge \hbar </math> |
infinite potential well | <math>E_n = (hn/2L)^2/2m</math> |
wavefunction of a trapped electron | <math>\psi_n(x) = A sin(n\pi x/L)</math>, for positive int n |
wavefunction probability density | <math>p(x) = \psi^2_n(x)dx</math> |
normalization | <math>\int \psi^2_n(x)dx = 1</math> |
hydrogen atom orbital energy | <math>E_n = -me^4/8\epsilon_0^2h^2n^2 = 13.61eV/n^2</math>, for positive int n |
hydrogen atom spectrum | <math>1/\lambda = R(1/n^2_{low} - 1/n^2_{high})</math> |
hydrogen atom radial probability density | <math>P(r) = 4r^2/a^3e^{2r/a}</math> |
spin projection quantum number | <math>m_s \in \{-1/2,+1/2\}</math> |
orbital magnetic dipole moment | <math>\mathbf{\mu}_{orb} = -e\mathbf{L}/2m</math> |
orbital magnetic dipole moment components | <math>\mathbf{\mu}_{orb,z} = -m_\mathcal{L}\mu_B</math> |
spin magnetic dipole moment | <math>\mathbf{\mu_s} = -e\mathbf{S}/m = gq\mathbf{S}/2m</math> |
orbital magnetic dipole moment | <math>\mathbf{\mu}_{orb}=-e\mathbf{L}_{orb}/2m</math> |
spin magnetic dipole moment potential | <math>U = -\mathbf{\mu}_s\cdot\mathbf{B}_{ext} = -\mu_{s,z}B_{ext}</math> |
orbital magnetic dipole moment potential | <math>U = -\mathbf{\mu}_{orb}\cdot\mathbf{B}_{ext} = -\mu_{orb,z}B_{ext}</math> |
Bohr magneton | <math>\mu_B = e\hbar/2m</math> |
angular momentum components | <math>L_z = m\mathcal{L}\hbar</math> |
spin angular momentum magnitude | <math>S = \hbar\sqrt{s(s+1)}</math> |
cutoff wavelength | <math>\lambda_{min} = hc/K_0</math> |
density of states | <math>N(E) = 8\sqrt{2}\pi m^{3/2}E^{1/2}/h^3</math> |
occupancy probability | <math>P(E) = 1/(e^{(E-E_F)/kT}+1)</math> |
Fermi energy | <math>E_F = (3/16\sqrt{2}\pi)^{2/3}h^2n^{2/3}m</math> |
mass number | <math>A = Z+N</math> |
nuclear radius | <math>r=r_0A^{1/3}, r_0 \approx 1.2fm</math> |
mass excess | <math>\Delta = M - A</math> |
radioactive decay | <math>N = N_0e^{-\lambda t}</math> |
Hubble constant | <math>H = 71.0km/s</math> |
Hubble's law | <math>v=Hr</math> |
conservation of lepton number | <math></math> |
conservation of baryon number | <math></math> |
conservation of strangeness | <math></math> |
eightfold way | <math></math> |
weak force | <math></math> |
strong force | <math>
\begin{align} \mathcal{L}_\mathrm{QCD} & = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\ & = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m)\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \, \\ \end{align} </math> |
Noether's theorem | <math></math> |
Electroweak interaction | :<math>\mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.</math>
|
Quantum electrodynamics | :<math>\mathcal{L}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,</math> |
क्वांटम यांत्रिकी (Quantum Mechanics)
Postulate 1: State of a system | A system is completely specified at any one time by a Hilbert space vector. |
Postulate 2: Observables of a system | A measurable quantity corresponds to an operator with eigenvectors spanning the space. |
Postulate 3: Observation of a system | Measuring a system applies the observable's operator to the system and the system collapses into the observed eigenvector. |
Postulate 4: Probabilistic result of measurement | The probability of observing an eigenvector is derived from the square of its wavefunction. |
Postulate 5: Time evolution of a system | The way the wavefunction evolves over time is determined by Shrodinger's equation. |
इन्हें भी देखें
सन्दर्भ
- स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
बाहरी कड़ियाँ
- Physics formulae at xs4all.nl