बोस-आइन्स्टाइन सांख्यिकी
क्वांटम सांख्यिकी तथा सांख्यिकीय भौतिकी में अविलगनीय (indistinguishable) कणों का संचय केवल दो विविक्त ऊर्जा प्रावस्थाओं (discrete energy states) में रह रकता है। इसमें से एक का नाम बोस-आइन्स्टाइन सांख्यिकी (Bose–Einstein statistics) है। लेजर तथा घर्षणहीन अतितरल हिलियम के व्यवहार इसी सांख्यिकी के परिणाम हैं। इस व्यवहार का सिद्धान्त १९२४-२५ में सत्येन्द्र नाथ बसु और अल्बर्ट आइंस्टीन ने विकसित किया था। 'अविलगनीय कणों' से मतलब उन कणों से है जिनकी ऊर्जा अवस्थाएँ बिल्कुल समान हों।
यह सांख्यिकी उन्ही कणों पर लागू होती है जो जो पाउली के अपवर्जन सिद्धांत के अनुसार नहीं चलते, अर्थात् अनेकों कण एक साथ एक ही 'क्वांटम स्टेट' में रह सकते हैं। ऐसे कणों का चक्रण (स्पिन) का मान पूर्णांक होता है तथा उन्हें बोसॉन (bosons) कहते हैं।
यह सांख्यिकी १९२० में सत्येन्द्रनाथ बोस द्वारा प्रतिपादित की गयी थी और फोटानों के सांख्यिकीय व्यवहार को बताने के लिये थी। इसे सन् १९२४ में आइंस्टीन ने सामान्यीकृत किया जो कणों पर भी लागू होती है।
बोस-आइन्स्टाइन वितरण
सांख्यिकीय रूप से, ऊष्मागतीय साम्य की दशा में, Ei ऊर्जा वाले कणों की संख्या ni निम्नलिखित सम्बन्ध के अनुसार होगी-
- <math> n_i = \frac{g_i} { \exp (\frac{ E_i - \mu } {k_{B}T}) - 1 } \,</math>
जहाँ :
- gi उन प्रावस्थाओं (states) की कुल संख्या है जो Ei ऊर्जा वाले हैं।
- μ रासायनिक विभव है,
- kB बोल्ट्समान नियतांक है,
- T तापमान है।
सीमा
अधिक तापमान पर क्वाण्टम प्रभाव अदृष्य होने लगता है और तब बोस-आइंस्टाइन सांख्यिकी, मैक्सवेल-बोल्टमान सांख्यिकी की तरफ अग्रसर होने लगती है। किन्तु कम ताप पर दोनों सांख्यिकी अलग-अलग रहती हैं।
इन्हें भी देखें
- हिग्स बोसॉन (Higgs boson)
- अति तरलता (सुपरफ्लुइडिटी)