अभिलक्षणिक बहुपद

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ

रैखिक बीजगणित में प्रत्येक वर्ग मैट्रिक्स के सहवर्ती एक लाक्षणिक बहुपद (characteristic polynomial) परिभाषित किया जाता है। किसी वर्ग मैट्रिक्स का लाक्षणिक बहुपद बहुत उपयोगी परिकल्पना है - इससे उस वर्ग मैट्रिक्स में निहित (छिपी हुई) बहुत से महत्वपूर्ण गुण बाहर आ जाते हैं। लाक्षणिक बहुपद के द्वारा आइगेनमान (eigenvalues), मैट्रिस का सारणिक (determinant) तथा इसके ट्रेस (trace) का ज्ञान हो जाता है।

परिचय

वर्ग मैट्रिक्स A दिया हुआ है और हम वह बहुपद ज्ञात करना चाहते हैं जिसके मूल A के आइगनमानों के बराबर हों।

कोई अदिश λ, A का एक आइगनमान तभी और केवल तभी हो सकता है है यदि आइगनसदिश (eigenvector) <math>\mathbf{v} \neq 0</math> निम्नलिखित सम्बन्ध को संतुष्ट करता है -

<math>A \mathbf{v} = \lambda \mathbf{v},\,</math>

या,

<math>(\lambda I - A)\mathbf{v} = 0\,</math>

(यहाँ I आइडेन्टिटी मैट्रिक्स है। चूंकि v अशून्य है, इसलिये मैट्रिक्स λI − A सिंगुलर मैट्रिक्स होगी। इसका अर्थ यह हुआ कि इसका सारणिक (determinant) शून्य होगा और इसका व्युत्क्रम नहीं निकाला जा सकता) इस प्रकार फलन det(λ I − A) के मूल, A के आइगनमानों के बराबर होंगे। यह भी स्पष्ट है कि यह सारणिक वस्तुत: λ का एक बहुपद होगा।

उदाहरण

माना कि हम निम्नलिखित मैट्रिक्स का लाक्षणिक बहुपद निकालना चाहते हैं -

<math>A=\begin{pmatrix}

2 & 1\\ -1& 0 \end{pmatrix}. </math> इसके लिये हमें निम्नलिखित मैट्रिक्स का सारणिक ज्ञात करना पड़ेगा-

<math>t I-A = \begin{pmatrix}

t-2&-1\\ 1&t \end{pmatrix} </math> और इस मैट्रिक्स का सारणिक का मान निकालने पर-

<math>(t-2)t - 1(-1) = t^2-2t+1.\,\!</math>

यही मैट्रिक A का लाक्षणिक बहुपद है।

लाक्षणिक बहुपद के गुणधर्म

  • लाक्षणिक बहुपद का सबसे महत्वपूर्ण गुण यह है कि इसके मूल वही होते हैं जो मैट्रिक्स A के आइगनमान।
  • लाक्षणिक बहुपद का घात मैट्रिक्स A के आर्दर के बराबर होता है।

इन्हें भी देखें