स्पर्शरेखा

मुक्त ज्ञानकोश विकिपीडिया से
(स्पर्श रेखा से अनुप्रेषित)
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
रेखा s बिन्दु P पर वक्र की स्पर्शरेखा है। S1, S2, S3, S4 आदि अन्य रेखाएँ स्पर्शी नहीं हैं क्योंकि वे दो बिन्दुओं पर वक्र को काटती हैं। रेखा n बिन्दु P पर स्पर्शी के लम्बवत है और बिन्दु P पर वक्र की अभिलम्ब (नॉर्मल) कहलाती है।

ज्यामिति में किसी समतल में स्थित किसी वक्र की किसी बिन्दु पर स्पर्शरेखा या स्पर्शी (tangent line या केवल tangent) उस सरल रेखा को कहते हैं जो उस वक्र को उस बिन्दु पर 'बस स्पर्श करती' है, अर्थात् उस वक्र को केवल उसी बिन्दु पर छूती है और अन्य किसी बिन्दु पर नहीं। वक्र y = f(x) के बिन्दु x = c पर स्पर्शरेखा बिन्दु (c, f(c)) से होकर गुजरती है और उसकी प्रवणता (slope) f'(c) के बराबर होती है।

समीकरण

जब वक्र का समीकरण y = f(x) के रूप में दिया हो तो स्पर्शी की प्रवणता का मान <math>\frac{dy}{dx}</math> द्वारा निकाला जा सकता है। दी हुई प्रवणता तथा किसी दिये हुए बिन्दु (XY) से जाने वाली सरल रेखा का समीकरण निम्नलिखित है-

<math>y-Y=\frac{dy}{dx}(X) \cdot (x-X)</math>

जहाँ (xy) उस स्पर्शरेखा के उपर स्थित कोई भी बिन्दु हैं और अवकलज (derivative) का मान <math>x=X</math> के लिये निकाला गया हो।[१]

उदाहरण

माना कि वक्र : y = f(x) = x2 के बिन्दु (-1,1) पर स्पर्शरेखा का समीकरण प्राप्त करना है। यहाँ f' (-1) = -2 है। अतः स्पर्शरेखा का समीकरण निम्नलिखित होगा-

<math>y-1=-2(x+1)</math>

या, y = -2x-1

एक वक्र के विभिन्न बिन्दुओं पर स्पर्शरेखा का चलित रूप में प्रदर्शन

अभिलम्ब के समीकरण

किसी वक्र के किसी बिन्दु पर अभिलम्ब (normal line) वह सरल रेखा है जो दिये गये बिन्दु से गुजरती है तथा उस बिन्दु पर स्पर्शरेखा के लम्बवत होती है। दो परस्पर लम्बवत रेखाओं की प्रवणताओं का गुणनफल −1 होता है, अतः यदि दिये गये वक्र का समीकरण y = f(x) हो तो अभिलम्ब की प्रवणता का मान

<math>-\frac{1}{\frac{dy}{dx}}</math>

होगा तथा अभिलम्ब रेखा का समीकरण निम्नलिखित होगा-

<math>(X-x)+\frac{dy}{dx}(Y-y)=0.</math>

सन्दर्भ

साँचा:reflist

इन्हें भी देखें

बाहरी कड़ियाँ

  1. Edwards Art. 191