वक्र का अनुरेखण

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

वक्र का समीकरण दिए रहने पर वक्र का अनुरेखण संभव होता है। चरों के ऐसे संगत मान ज्ञात करके, जिसे समीकरण संतुष्ट हो जाए, उन अनेक बिंदुओं का पता लग सकता है जिनसे वक्र गुजरता है। इन बिंदुओं को जोड़ने पर वक्र की एक मोटी रूपरेखा का पता लग जाता है। फिर भी कुछ ऐसी बातें होती हैं जिनसे उसके आकार प्रकार, लक्षण, स्वरूप आदि जानने में आसानी हो जाती हैं, जैसे :

  • (क) सममिति (Symmetry) - यदि वक्र के समीकरण में y का कोई विषमघात नहीं है, तो वक्र x-अक्ष के प्रति सममित होगा। यदि x का कोई विषमघात नहीं है, तो वक्र Y-अक्ष के प्रति सममित होगा, तथा x और y दोनों का कोई विषमघात नहीं है, तो वक्र दोनों अक्षों के प्रति सममित होगा। यदि x और y को क्रमश: -x और -y रखने से समीकरण में कोई अंतर नहीं पड़ता है, तो वक्र सम्मुख चतुर्थांशों में सममित होगा। x और y के विनिमय (interchange) से समीकरण यदि अपरिवर्तित रहता है, तो वक्र y = x रेखा के प्रति सममित होगा। ध्रुवी समीकरण में q को -q रखने से यदि कोई अंतर नहीं पड़ता है, तो वक्र आदि रेखा के प्रति सममित होगा। यदि r का कोई विषमघात नहीं है, तो वक्र मूल के प्रति सममित होगा और ध्रुव एक केंद्र होगा।
  • (ख) अनंतस्पर्शी - इनकी संख्या और वक्र के सापेक्ष इनकी स्थिति।
  • (ग) वक्र के नतिपरिवर्तन बिंदु, बहुल बिंदु, कस्प, नोड आदि तथा इनकी संख्या और स्वरूप।
  • (घ) वक्र और अक्ष जहाँ कटते हैं, उन बिंदुओं पर वक्र की स्थिति और स्पर्श रेखाओं की दिशा आदि।
  • (च) मूल परस्पर्शी, वक्र के सापेक्ष उसकी स्थिति, विचित्रता आदि, यदि वक्र मूल से गुजरता हो।
  • (छ) वक्र की सीमाएँ।