यंत्र शिक्षण

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


मशीन शिक्षण या यन्त्र अधिगम या स्वचालित शिक्षण कृत्रिम बुद्धि की एक उपखण्ड है। यह उन प्रणालियों के निर्माण और अध्ययन से संबंधित हैं जो आंकड़ों से सीख सकते हैं। उदाहरणतः, एक यंत्र अधिगम प्रणाली को ईमेल संदेशों में से स्पैम और गैर-स्पैम संदेशों का अन्तर पहचानने में प्रशिक्षण दिया जा सकता है। सीखने के पश्चात, यह नये ईमेल संदेशों का स्पैम और गैर-स्पैम फोल्डरों में वर्गीकरण करने के लिए उपयोग किया जा सकता है।

यंत्र अधिगम, मूल रूप से प्रतिनिधित्व और सामान्यीकरण से संबंधित है। आंकड़ों के इंस्टैंस और वे फंक्शन जो इनपर मूल्यांकन किए जाते हैं, उनके प्रतिनिधित्व सभी यंत्र अधिगम प्रणालियों के अंश हैं। सामान्यीकरण वह विलक्षण है जिस्से प्रणालियाँ अप्रत्यक्ष आंकड़ों के इंस्टैंस पर भली भाँति निष्पादन करेंगीं। जिन परिस्थितियों के अंतर्गत यह प्रत्याभूति दिया जा सके, वह अभिकलनीय अधिगम सिद्धांत नामक क्षेत्रांश का एक मुख्य मुद्दा है।

विभिन्न प्रकार के यंत्र अधिगम कार्य और उनके सफल उपयोग विद्यमान हैं। प्रकाशीय अक्रूर अभिज्ञान, जहाँ मुद्रित अक्षर स्वतः पहचाने जाते हैं, यंत्र अधिगम का एक उत्कृष्ट उदाहरण है।[१]

परिभाषा

सन् १९५९ में, आर्थर सैम्यूएल ने यंत्र अधिगम को निम्नलिखित शब्दों में परिभाषित किया- "अध्ययन का वह क्षेत्र जो संगणक को बिना स्पष्टतया से क्रमानुदेशन किये सीखने की क्षमता देता है।"[२]

टाॅम एम. मिट्चल ने एक अधिक औपचारिक, व्यापक रूप से उद्धृत परिभाषा दिया- "कहा जाता है कि एक संगणक प्रोग्राम किसी कार्य टी और निष्पादन के नाप पी के संबंध में, अनुभव ई से सीखता है, यदि पी द्वारा मापा टी के कार्यों में उसका निष्पादन अनुभव ई के साथ सूधारता है।"[३] यह परिभाषा प्रसिद्ध है क्योंकि यह संज्ञानात्मक शब्दों के बजाय, मूल रूप से परिचालन है। यह एेलन ट्यूरिंग के दस्तावेज़ "अभिकलन यंत्रसमूह और बुद्धि" का प्रस्ताव कि यह प्रश्न कि "क्या यंत्र सोच सकते हैं?" इस प्रश्न से प्रतिस्थापित हो कि "क्या यंत्र वो कर सकते हैं जो हम (सोचने वाले जीवों के रूप में) कर सकते हैं?" का अनुगमन करता है।[४]

सामान्यीकरण

अपने अनुभव से सामान्यीकरण करना, एक नौसिखिया का मुख्य उद्देश्य होता है।[५][६] इस संदर्भ में, एक सीखने वाले यंत्र की, सीखने वाले आंकड़ा समुच्चय के अनुभव के पश्चात, नये और नाचीज उदाहरण अथवा कार्य के निष्पादन करने को सामान्यीकरण कहते है। प्रशिक्षण के उदाहरण सामान्यतः किसी अज्ञात संभावना वितरण (जो घटने के स्थान का प्रतिनिधि माना जाता है) और सीखने वाले को इस स्थान के प्रतिवेश में एक सामान्य माॅडल बनाना पड़ता है जो उसको नवीन परिस्थितियों में पर्याप्त परिशुद्ध भविष्यवाणियाँ उत्पादन करने का सामर्थ्य दें।

मानव परस्पर क्रिया

कुछ यंत्र अधिगम प्रणालियाँ आंकड़ा विज्श्लेषण में मानव अंतर्ज्ञान की ज़रूरत को लुप्त करने का प्रयास करते हैं। दूसरी प्रणालियाँ मानव और यंत्र के बीच एक सहयोगी दृष्टिकोण अपनाते हैं। तथापि, मानव अंतर्ज्ञान को सम्पूर्णतया लुप्त नहीं किया जा सकता है क्योंकि प्रणाली के डिज़ाइनर को यह निर्दिष्ट करना ज़रूरी है कि आंकड़ों का प्रतिनिधित्व कैसे होगा और आंकड़ों के लक्षण वर्णन की खोज के लिए क्या तंत्र उपयोग किए जाएँगे।

कलन विधि के प्रकार

यंत्र अधिगम कलन विधियों को उनके वांछित परिणाम अथवा यंत्र के प्रज्ञिक्षण के दौरान उप्लब्ध इनपुट के आधार पर वर्गीकरण किया जा सकता है।

  • निगरानी किया हुआ अधिगम कलन विधियाँ वर्गीकरण किये हुए उदाहरणों पर प्रशिक्षित है, अर्थात् इनपुट जहाँ वांछित आउटपुट ज्ञात हो।
  • बिना निगरानी किया हुआ अधिगम कलन विधियाँ वर्गीकरण नहीं किये हुए उदाहरणों पर संचालन करते हैं, अर्थात् इनपुट जहाँ वांछित आउटपुट अज्ञात हो।
  • आधा निगरानी किया हुआ अधिगम वर्गीकरण किये हुए और नहीं किये हुए उदाहरणों को संघटित करके उपयुक्त फन्कशन अथवा वर्गीकर्त्ता उत्पन्न करता है।
  • पारगमन अथवा ट्रान्सडक्टिव अनुमान, विशिष्ट और स्थायी (परीक्षण की) परिस्थितियों में, जाँच किए हुए, विशिष्ट (प्रशिक्षण की) परिस्थितियों से नए आउटपुट्स की भविष्यवाणी करने का प्रयास करता है।
  • सुदृढीकरण अधिगम का संबंध किसी पुरस्कार की धारणा से बुद्धिमान एजेंट्स का किसी परिवेश में आचरण करने से है।
  • अधिगम का सीखना पूर्व अनुभव के आधार पर स्वयं के अधिष्ठापन के पूर्वाग्रह सीखता है।
  • विकास संबंधी अधिगम, यंत्रमानव का सविस्तार, स्वयं के सीखने की स्थितियों के अनुक्रम (जिनको पाठ्यचर्या भी कहा जाता है) उत्पन्न करता है।

सन्दर्भ

  1. Wernick, Yang, Brankov, Yourganov and Strother, Machine Learning in Medical Imaging, IEEE Signal Processing Magazine, vol. 27, no. 4, July 2010, pp. 25-38
  2. साँचा:cite book
  3. * Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7, p.2.
  4. स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
  5. Christopher M. Bishop (2006) Pattern Recognition and Machine Learning, Springer ISBN 0-387-31073-8.
  6. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning, The MIT Press ISBN 9780262018258.