भूगोलीय निर्देशांक प्रणाली

मुक्त ज्ञानकोश विकिपीडिया से
(जी सी एस से अनुप्रेषित)
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
पृथ्वी के मानचित्र पर अक्षांश (क्षैतिज) व (देशांतर रेखाएं (लम्बवत), एकर्ट षष्टम प्रोजेक्शन; वृहत संस्करण (पीडीएफ़, ३.१२MB)

भूगोलीय निर्देशांक प्रणाली (अंग्रेज़ी:जियोग्राफिक कोआर्डिनेट सिस्टम) एक प्रकार की निर्देशांक प्रणाली होती है, जिसके द्वारा पृथ्वी पर किसी भी स्थान की स्थिति तीन (३) निर्देशांकों के माध्यम से निश्चित की जा सकती है। ये गोलाकार निर्देशांक प्रणाली द्वारा दिये जाते हैं।

पृथ्वी पूर्ण रूप से गोलाकार नहीं है, बल्कि एक अनियमित आकार की है, जो लगभग एक इलिप्सॉएड आकार बनाती है। इसके लिये इस प्रकार की निर्देशांक प्रणाली बनाना, जो पृथ्वी पर उपस्थित प्रत्येक बिन्दु के लिये अंकों के अद्वितीय मेल से बनने वाला स्पष्ट निर्देशांक प्रस्तुत करे, अपने आप में एक प्रकार की चुनौती था।

अक्षांश और देशांतर

अक्षांश फ़ाई (φ) एवं देशान्तर लैम्ब्डा (λ)

अक्षांश (अंग्रेज़ी:लैटिट्यूड, Lat., φ, या फ़ाई) पृथ्वी की सतह पर एक बिन्दु से भूमध्यीय समतल तक बना कोण होता है, जिसे ग्लोब के केन्द्र पर नापा जाता है। समान अक्षांश बिन्दुओं को जोड़ने वाली रेखाओं को अक्षांश रेखाएं कहते हैं। अक्षांश की रेखाएं इस प्रक्षेप में क्षैतिज एवं सीधी प्रतीत होती हैं, परंतु वे भिन्न अर्धव्यासों वाली और वृत्तीय होती हैं। एक अक्षांश पर स्थित सभी स्थान एकसाथ जुड़कर अक्षांश का वृत्त बनाते हैं। ये सभी वृत्त भूमध्य रेखा के समानांतर होते हैं। इनमें भौगोलिक उत्तरी ध्रुव ९०° उत्तर कोण पर रहता है; व भौगोलिक दक्षिणी ध्रुव ९०° दक्षिण कोण पर। शून्य अंश (0°) अक्षांश रेखा को भूमध्य रेखा कहते हैं। ये ग्लोब को उत्तरी व दक्षिणी, दो गोलार्धों में बांटती है।

देशांतर (अंग्रेज़ी:लॉन्गीट्यूड, Long., λ, या लैम्ब्डा) दोनों भूगोलीय ध्रुवों के बीच खींची हुई काल्पनिक मध्याह्न रेखाओं का सन्दर्भ देशांतर रेखा से पूर्व या पश्चिम में बना कोण होता है और जो मध्याह्न रेखा जिस बिंदु या स्थान से गुजरती है उसका कोणीय मान उस स्थान का देशांतर होता है। सभी देशांतर रेखाएं अर्ध-वृत्ताकार होती हैं। ये समांनांतर नहीं होती हैं व उत्तरी व दक्षिणी ध्रुवों पर अभिसरित होकर मिल जाती हैं।

अंश : कोण का मापन

कोण को लिखने के कई फ़ॉर्मैट्स होते हैं, सभी समान अक्षांश, देशांतर के क्रम में लिखे जाते हैं।

  • DMS डिगरी:मिनट:सेकंड (४९°३०'००"उ, १२३°३०'००"प.)
  • DM डिगरी:दशमलव मिनट (४९°३०.०', -१२३°३०.०'), (४९d३०.०m,-१२३d३०.०')
  • DD दशमलव डिगरी (४९.५०००,-१२३.५०००), प्रायः ४-६ दशमलव अंकों सहित।

जियोडेसिक ऊंचाई

पृथ्वी के ऊपर, अंदर या ऊंचाई पर स्थित किसी स्थ्लाकृतिक फ़ीचर कॊ पूर्णतया बताने हेतु, इसके केन्द्र य सतह से उस बिन्दु की लम्बवत ऊंचाई भी बतानी होगी। इसकी सतह में अनियमितता व ऊबड़-खाबड़ प्राकृतिक स्वभाव के कारण ये ऊंचाई उस बिन्दु के नीचे बेहतर स्पष्टता से परिभाषित लम्बवत डैटम जैसे समुद्र-सतह के सन्दर्भ में बतायी जाती है। प्रत्येक देश ने अपने स्वयं के डैटम निश्चित किये हुए हैं, उदाहरणतया यूनाइटेड किंगडम का सन्दर्भ बिन्दु न्यूलिन है। पृथ्वी के केन्द्र से दूरी बहुत गहरे बिन्दुओं एवं अंतरिक्ष की स्थितियों को बताने के लिये प्रयोग की जाती है।[१]

कार्टेज़ियन निर्देशांक

गोलीय निर्देशांक द्वारा बताया गया प्रत्येक बिन्दु अब कार्तीय निर्देशांक पद्धति द्वारा साँचा:nowrap भी व्यक्त किया जा सकता है। ये मानचित्रों पर किसी स्थान की स्थिति को अंकित करने हेतु अति-प्रयोगनीय तरीका तो नहीं है, किन्तु ये दूरियां नापने एवं अन्य गणितीय प्रकार्य संपन्न करने हेतु प्रयोग किया जाता है। इसका उद्गम प्रायः गोले का केन्द्र ही होता है, जो लगभग पृथ्वी के केन्द्र के निकट ही होता है।

अक्षांश और रेखांश को रैखिक इकाईयों जैसे व्यक्त करना

सागर सतह पर एक गोलीय सतह पर, एल अक्षांशीय सेकंड बराबर ३०.८२ मीटर और एक रेखांशीय मिनट १८४९ मीटर होता है। एक अक्षांशीय डिगरी ११०.९ किलोमीटर के बराबर होती है। रेखांशों के वृत्त भूगोलीय ध्रुवों पर मिलते हैं। इनकी पूर्व-पश्चिम की चौड़ाई अक्षांश पर निर्भर करती है। भूमध्य रेखा के निकट सागर सतह पर एक रेखांशीय सेकंड बराबर ३०.९२ मीटर, एव रेखांशीय मिनट बराबर १८५५ मीटर, तथा एक रेखांशीय डिगरी १११.३ किलोमीटर के बराबर होती है। ३०° पर एक रेखांशीय सेकंड २६.७६ मीटर, ग्रीनविच में (५१° २८' ३८" उ.) is १९.२२ मीटर, एवं ६०° पर ये १६.४२ मीटर होता है।

अक्षांश <math>\scriptstyle{\phi}\,\!</math> पर एक रेखांशीय डिगरी की चौड़ाई इस सूत्र द्वारा मिलती है (चौड़ाई प्रति मिनट एवं सेकंड प्राप्त करने हेतु, इसे ६० एवं ३६०० से क्रमशः भाग दें):

<math>\frac{\pi}{180^{\circ}}\cos(\phi)M_r,\,\!</math>

जहां पृथ्वी की औसत मेरिडिओनल त्रिज्या <math>\scriptstyle{M_r}\,\!</math> लगभग साँचा:nowrap के बराबर होती है। औसत त्रिज्या मान के प्रयोग के कारण, ये सूत्र एकदम सटीक नहीं है। अक्षांश पर रेखांशीय डिगरी <math>\scriptstyle{\phi}\,\!</math> का बेहतर सन्निकटन प्राप्त करने हेतु <math>\scriptstyle{\phi}\,\!</math> इसे प्रयोग करें:

<math>\frac{\pi}{180^{\circ}}\cos(\phi)\sqrt{\frac{a^4\cos(\phi)^2+b^4\sin(\phi)^2}{(a\cos(\phi))^2+(b\sin(\phi))^2}},\,\!</math>

जहां पृथ्वी की भूमध्यीय एवं ध्रुवीय त्रिज्याएं क्रमशः <math>\scriptstyle{a,b}\,\!</math> ६,३७८,१३७ मी., ६,३५६,७५२.३ मी., के बराबर हैं।

कुछ अक्षांशों पर लंबाई का मान (कि॰मी॰ में)
अक्षांश शहर डिगरी मिनट सेकंड ±०.०००१°
६०° सेंट पीटर्सबर्ग ५५.६५ कि॰मी॰ ०.९२७ कि॰मी॰ १५.४२मी. ५.५६मी.
५१° २८' ३८" N ग्रीनविच ६९.२९ कि॰मी॰ १.१५५ कि॰मी॰ १९.२४मी. ६.९३मी.
४५° बोर्डियॉक्स ७८.७ कि॰मी॰ १.३१ कि॰मी॰ २१.८६मी. ७.८७मी.
३०° न्यू ओर्लियंस ९६.३९ कि॰मी॰ १.६१ कि॰मी॰ २६.७७मी. ९.६३मी.
०° क्वीटो १११.३ कि॰मी॰ १.८५५ कि॰मी॰ ३०.९२मी. ११.१३मी.

सन्दर्भ

साँचा:reflist

बाहरी कड़ियाँ

  1. ए गाइड टू को-ऑर्डिनेट सिस्टम्स इन ग्रेट ब्रिटेन, संस्क.१.७ अक्तू, २००७ डी००६५९, अभिगमन तिथि:१४ मार्च, २००८