कौशी संवेग समीकरण

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
कौशी स्ंवेग समीकराण्
कौशी संवेग समीकरण कौशी द्वारा सुझावित आंशिक अवकल समीकरण है जो किसी भी सांतत्यक में संवेग अपवाहन के अन-आपेक्षिक संवेग की व्याख्या करता है:[१]
<math>\rho \frac{D \mathbf{v}}{D t} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math>

अथवा, पदार्थ व्युत्पन्न से व्याख्या करने पर,

<math>\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right] = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math>

जहाँ <math>\rho</math> सांतत्यक का घनत्व, <math>\boldsymbol{\sigma}</math> प्रतिबल प्रदिश है और <math>\mathbf{f}</math> पिण्ड के इकाई आयतन पर कार्यरत सभी बलों के का संयोजन है (सामान्यत: घनत्व और गुरुत्व)। <math>\mathbf{v}</math> वेग सदिश क्षेत्र है जो दिक्-काल पर निर्भर करता है।

प्रतिबल प्रदिश कभी-कभी दाब और विचलनात्मक प्रतिबल प्रदिश में विपाटित हो जाता है:

<math>\boldsymbol{\sigma} = -p\mathbb{I} + \mathbb{T}</math>

जहाँ <math>\scriptstyle \mathbb{I}</math>, <math>\scriptstyle 3 \times 3</math> की तत्समक आव्यूह (ईकाई आव्यूह) है और <math>\scriptstyle \mathbb{T}</math> विचलनात्मक प्रतिबल प्रदिश। प्रतिबल प्रदिश का अपसरण निम्न प्रकार लिखा जा सकता है

<math>\nabla \cdot \boldsymbol{\sigma} = -\nabla p + \nabla \cdot\mathbb{T}.</math>

सभी अनापेक्षिक संवेग संरक्षण समीकरण, जैसे नेवियर-स्टोक्स समीकरण, को कौशी संवेग समीकरण और संघटक सम्बंध द्वारा प्रतिबल प्रदिश को निर्दिष्ट करते हुए व्युत्पित किया जा सकता है।

व्युत्पत्‍ति

न्यूटन का गति का द्वितीय नियम (<math>i</math>वाँ घटक) और नियंत्रण आयतन को सांतत्यक में लागू करते हुए निम्न प्रकार निदर्शित किया जा सकता है:

<math>m a_i = F_i\,</math>
<math>\rho \int_{\Omega} \frac{d u_i}{d t} \, dV = \int_{\Omega} \nabla_j\sigma_i^j \, dV + \int_{\Omega} f_i \, dV</math>
<math> \int_{\Omega} (\rho \frac{d u_i}{d t} - \nabla_j\sigma_i^j - f_i)\, dV = 0</math>
<math> \rho \dot{u_i} - \nabla_j\sigma_i^j - f_i = 0 </math>

जहाँ <math>\Omega</math> नियंत्रण आयतन को निरुपित करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन में लागू होती है अतः यह शून्य समाकल्य की अवस्था में भी कौशी संवेग समीकरण के अनुसार सत्य है। इस समीकरण के व्युत्पन में सबसे बड़ी कठिनाई प्रतिबल प्रदिश का अवकलन ज्ञात करना है जो एक बल घटक <math>F_i</math> है।


कार्तीय निर्देशांक

<math> \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}+ w \frac{\partial u}{\partial z}\right) = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho g_x</math>
<math> \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}+ w \frac{\partial v}{\partial z}\right) = -\frac{\partial P}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{zy}}{\partial z} + \rho g_y</math>
<math> \rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y}+ w \frac{\partial w}{\partial z}\right) = - \frac{\partial P}{\partial z} + \frac{\partial \tau_{zz}}{\partial z} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{xz}}{\partial x} + \rho g_z.</math>

बेलनी निर्देशांक

<math>

r:\;\;\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\phi}^2}{r}\right) = -\frac{\partial P}{\partial r} - \frac{1}{r}\frac{\partial {(r{\tau_{rr})}}}{\partial r} - \frac{1}{r}\frac{\partial {\tau_{\phi r}}}{\partial \phi} - \frac{\partial {\tau_{z r}}}{\partial z} + \frac {\tau_{\phi \phi}}{r} + \rho g_r</math>

<math>

\phi:\;\;\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + u_z \frac{\partial u_{\phi}}{\partial z} + \frac{u_r u_{\phi}}{r}\right) = -\frac{1}{r}\frac{\partial P}{\partial \phi} -\frac{1}{r}\frac{\partial {\tau_{\phi \phi}}}{\partial \phi} - \frac{1}{r^2}\frac{\partial {(r^2{\tau_{r \phi})}}}{\partial r} - \frac{\partial {\tau_{z r}}}{\partial z} + \rho g_{\phi}</math>

<math>

z:\;\;\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) = -\frac{\partial P}{\partial z} - \frac{\partial {\tau_{z z}}}{\partial z} - \frac{1}{r}\frac{\partial {\tau_{\phi z}}}{\partial \phi} - \frac{1}{r}\frac{\partial {(r{\tau_{rz})}}}{\partial r} + \rho g_z.</math>


श्यानता और तरल वेग के व्यंजक में अपरूपण प्रतिबल के प्रभाव में और यह मानते हुए की घनत्व और श्यानता नियत हैं, तो कौशी संवेग समीकरण नेवियर-स्टोक्स समीकरण में बदल जाती है। अश्यान प्रवाह की अवस्था में नेवियर-स्टोक्स समीकरण साधारण रूप से आयलर समीकरण के रूप में प्राप्त होती है।

ये भी देखें

सन्दर्भ