अर्धचालक युक्ति

मुक्त ज्ञानकोश विकिपीडिया से
नेविगेशन पर जाएँ खोज पर जाएँ
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
अर्धचालक युक्तियों के निर्माण की सामान्य प्रक्रिया
Clean room.jpg अर्धचालक युक्तियां बहुत ही स्वच्छ वातावरण में निर्मित की जातीं हैं क्योंकि धूल और अन्य अशुद्धियों की उपस्थिति में इनकी गुणवत्ता अच्छी नहीं होती]]
Monokristalines Silizium für die Waferherstellung.jpg सिलिकॉन के बेलनाकार दण्ड से काटकर सिलिकॉन वेफर बनाये जाते हैं।
Silicon wafer with mirror finish.jpg
Wafer 2 Zoll bis 8 Zoll.jpg एक ही वेफर पर बहुत से परिपथ बना लिये जाते हैं। इन्हें हीरा कर्तक से काटकर अलग-अलग कर लिया जाता है।
IC Nanotecnology 2400X.JPG वेफर को काटने के बाद प्राप्त परिपथ (डाई के ऊपर परिपथ दिखाई दे रहा है।)
Eprom.jpg अन्तिम कार्य। यह एक 'चिप' है जिस पर बनी सर्किट दिखाई दे रही है।
PIC16CxxxWIN.JPG
No blue smoke.jpg अन्ततः, इन ये युक्तियाँ (जैसे आईसी आदि) विभिन्न कामों में लिये जाते है। (जैसे पीसी या टीवी के निर्माण में )


अर्धचालक युक्तियाँ (Semiconductor devices) उन एलेक्ट्रानिक अवयवों को कहते हैं जो अर्धचालक पदार्थों के गुण-धर्मों का उपयोग करके बनाये जाते हैं। सिलिकॉन, जर्मेनियम और गैलिअम आर्सेनाइड मुख्य अर्धचालक पदार्थ हैं। अधिकांश अनुप्रयोगों में अब उन सभी स्थानों पर अर्धचालक युक्तियाँ प्रयोग की जाने लगी हैं जहाँ पहले उष्मायनिक युक्तियाँ (निर्वात ट्यूब) प्रयोग की जाती थीं। अर्धचालक युक्तियाँ, ठोस अवस्था में इलेक्ट्रानिक संचलन पर आधारित हैं जबकि ट्यूब युक्तियाँ उच्चा निर्वात या गैसीय अवस्था में उष्मायनों के चालन पर आधारित थीं।

निर्माण के आधार पर अर्धचालक युक्तियाँ मुख्यतः दो प्रकार की होती हैं - अकेली युक्तियाँ और एकीकृत परिपथ (IC)

अर्धचालक युक्ति मूल तत्व

सिलिकॉन में बोरॉन के दूषण से डोपिगं

अर्धचालक पदार्थों का सबसे महत्वपूर्ण आकर्शण है के इन्हे दूषित कर इनके व्यवहार को नियंत्रित किया जा सकता है। दूषण की इस प्रक्रिया को डोपिगं कहते हैं। अर्धचालकों के चालन को वैद्युत क्षेत्र, रोशनी, ऊष्मा, यहाँ तक दबाव से भी नियंत्रित किया जा सकता है। इसलिये, अर्धचालकों का उपयोग संवेदकों को बनाने में होता है। विद्युतधारा का प्रवाह होता है "मुक्त" इलेक्ट्रान और "छिद्रों" के द्वारा, जिन्हे आवेश वाहक भी कहते है।

सिलिकॉन जैसे अर्धचालक में फॉस्फोरस या बोरॉन जैसे तत्वों को डालकर डोपिगं किया जाता है, जिससे अर्धचालक में उपलब्ध मुक्त इलेक्ट्रान या छिद्रों की मात्रा काफी हद तक बढ जाती है। जब दूषित अर्धचालक में अधिक्षम छिद्र होतें हैं तो उसे P-प्रकार अर्धचालक कहतें हैं और जब अधिक्षम इलेक्ट्रान होतें हैं तो उसे N-प्रकार अर्धचालक कहतें हैं, जहाँ P या N धनात्मक प्रभार या ऋणात्मक प्रभार के आवेश वाहकों का सूचक हैं।

अर्धचालकों का उत्पादन और उनके डोपिगं की प्रकृया अत्यंत ही नियंत्रित वातावरण, जिसे फैब कहते हैं, में होती है। P-प्रकार और N-प्रकार के अर्धचालकों के बीच के जोड को P-N जोड कहते हैं।

डायोड

P-N जोड से बने डायोड मे P-प्रकार और N-प्रकार के अर्धचालकों के बीच के जोड में अवक्षय क्षेत्र होता है जो विद्युतधारा के प्रवाह को N से P की ओर नही होने देता, पर P से N की ओर होने देता है। जब डायोड अग्र अभिनत होता है, जहाँ P की तरफ उच्चतर वैद्युत सन्चालन शक्ति होती है, तब विद्युतधारा प्रवाह होता है। इसके विपरीत, उत्त्क्रम अभिनत डायोड में धारा प्रवाह ना के बराबर होता है।

अर्धचालक पर रोशनी डालने से इलेक्ट्रान-छिद्र के जोडे बढ जातें हैं, जिससे चालकता बढ जाती है। इस प्रतिभास का फायदा उठाकर फोटो डायोड बनाया गया। संयोजित अर्धचालक डायोडों से प्रकाश पैदा की जा सकती है, जैसे प्रकाश उत्सर्जक डायोड (LED) और लेज़र डायोड में।

ट्रांज़िस्टर

ट्रांज़िस्टरों के प्रमुख प्रकार, द्विध्रुवीय जोड ट्रांज़िस्टर दो p-n जोडों, n-p-n या p-n-p समग्राकृतों में बनते हैं। मध्य खण्ड, जिसे "बेस" भी कहा जाता है, संकीर्ण होता है। अन्य खण्डों को उत्सर्जक (एमिटर) और समाहर्ता (कलेक्टर) कहते हैं। बेस और उत्सर्जक के बीच आवेश के अंतरावहित करने से बेस-समाहर्ता के गुणस्वभाव मे अन्तर आ जाता है, ततः, बेस-समाहर्ता के अग्र अभिनत होने के बावजूद धारा प्रवाह होता है। बेस-उत्सर्जक के छोटे से प्रवाह के बदलाव के अनुपात से कई गुना अधिक प्रवाह बेस-समाहर्ता के बीच मिलता है।

एक अन्य तरह का ट्रांज़िस्टर है क्षेत्र प्रभाव ट्रांज़िस्टर - इस अर्धचालक के चालकता को विद्युत क्षेत्र के प्रभाव से बढाया-घटाया जाता है। विद्युत क्षेत्र के प्रभाव से मुक्त इलेक्ट्रान और या छिद्रों की मात्रा तक बढ जाती है, इस प्रकार चालकता बढ जाती है। अगर इस विद्युत क्षेत्र को लगाने के लिये उत्त्क्रम अभिनत P-N जोड का प्रयोग करें, तो उसे जोड क्षेत्र प्रभाव ट्रांज़िस्टर (JFET) कहतें हैं; अगर इस विद्युत क्षेत्र को लगाने के लिये धातु ऑक्साइड का प्रयोग करतें हैं, तो बनता है धातु ऑक्साइड अर्धचालक क्षेत्र प्रभाव ट्रांज़िस्टर (MOSFET)

क्षेत्र प्रभाव ट्रांज़िस्टर

आज मॉस्फेट (MOSFET) सबसे महत्वपूर्ण अर्धचालक युक्ति है। विद्युत क्षेत्र को उत्पन्न करने का काम "गेट" (द्वार) विद्युदग्र करती है, जिससे "सोर्स" और "ड्रैन" के बीच के चैनल के चालकता का नियंत्रण होता है। इस चैनल के दो प्रकार हैं, P-चैनल (छिद्र) या N-चैनल (इलेक्ट्रान)। हालांकि धातु से मॉस्फेट को उसका नाम मिला, पर आज पॉलि सिलिकॉन को उपयोगित किया जाता है।

अर्धचालक पदार्थ

अर्धचालक युक्तियों के निर्माण में सिलिकॉन (Si) का सबसे अधिक प्रयोग होता है। अन्य पदार्थों की तुलना में इसके मुख्य गुण हैं कच्चे माल की कम लागत, निर्माण मे आसानी और व्यापक तापमान परिचालन सीमा। वर्तमान में अर्धचालक युक्तियों के निर्माण के लिये पहले सिलिकॉन को कम से कम ३००mm की चौडाई के बउल के निर्माण से किया जाता है, ताकी इस से इतनी ही चौडी वेफर बन सके।

पहले जर्मेनियम (Ge) का प्रयोग व्यापक था, किन्तु इसके उष्ण अतिसंवेदनशीलता के करण सिलिकॉन ने इसकी जगह ले ली है। आज जर्मेनियम और सिलिकॉन के कुधातु का प्रयोग अकसर अतिवेगशाली युक्तियों के निर्माण मे होता है; आई बी एम एसे युक्तियों का प्रमुख उत्पादक है।

गैलिअम आर्सेनाइड (GaAs) का प्रयोग भी व्यापक है अतिवेगशाली युक्तियों के निर्माण में, मगर इस पदार्थ के चौडे बउल नही बन पाते, जिसके कारण सिलिकॉन की तुलना में गैलिअम आर्सेनाइड से अर्धचालक युक्तियों को बनाना मेहंगा पडता है।

अन्य पदार्थ जिनका प्रयोग या तो कम व्यापक है, या उन पर अनुसंधान हो रहा है:

अर्धचालक युक्तियाँ

दो टर्मिनल वाली युक्तियाँ
तीन टर्मिनल वाली युक्तियाँ
चार टर्मिनल वाली युक्तियाँ
बहु-टर्मिनल युक्तियाँ

अर्धचालक युक्ती उपयोग

तर्क द्वार के बनने में ट्रांज़िस्टर (सभी प्रकार के ट्रान्जिस्टर) मूलभूत अंग हैं। पुनश्च, तर्क गेट, अंकीय प्रपथ के मूलभूत निर्माण-अवयव हैं। माइक्रोप्रोसेसर जैसे अंकीय परिरपथों में ट्रांज़िस्टर स्विच की भांति काम करते हैं। उदाहरण के लिये, मॉसफेट पर विद्युत संचालन शक्ति को लगाने से निर्धारित होता है कि स्विच बंद होता है या खुलता है।

जिन ट्रांज़िस्टरों का प्रयोग अनुरूप परिपथों में होता है, वहाँ इनका प्रयोजन स्विच के रूप मे ना हो कर, प्रवर्धन और दोलन के लिये होता है। इनमे निवेश (इन्पुट) और निर्गम (आउटपुट), दोनो ही अनुरूप होते हैं।

पावर अर्धचालक युक्तीयों का उपयोग उच्च वोल्ट या धारा के प्रकलन मे होता है। कम्प्यूटर का एसएमपीएस या मोटर ड्राइव आदि में पावर अर्धचालक युक्तियों का प्रयोग करना पडता है।। पावर अंकीय प्रपथ, जिन्हे "स्मार्ट" पावर युक्ती भी कहते हैं, मे IC तकनीकों को उच्च शक्ति पर लगाया जाता है।

अवयव अभिज्ञापक (component identifiers)

अर्धचालक युक्तियों के अवयव अभिज्ञापक अलग-अलग निर्माता अलग-अलग तरह से करते हैं। फिर भी कई कोशिशों के बाद कुछ मानकों का प्रचलन देखने में आ रहा है, जैसे की अमरीका में JEDEC JESD370B, यूरोप में प्रो एलेक्ट्रोन और जापान में JIS.

अर्धचालक युक्ती इतिहास

उन्नीसवीं सदी

अर्धचालकों का प्रयोग एलेक्ट्रोनिकी के क्षेत्र में ट्रांज़िस्टर के खोज के पहले से ही हो रहा है। बीसवीं सदी के शुरुवात के समय के रेडियो में इन्हें "बिल्ली की मूछ" नामक संसूचक अवयव के रूप में देखा गया। इन प्रारम्भिक संसूचकों के चालन में काफी असुविधायें थीं - टंग्स्टन के बने तंतु को गैलेना (लेड समल्फाइड) या कार्बोरन्डम (सिलिकॉन कार्बाइड) क्रिस्टल के आसपास तब तक हिलाना पडता था जब तक की वो अचानक ही काम ना करना शुरू कर दे! उस समय इनके परिचालन प्रणाली के बारे में पता नही था। निर्वात नलिका, जो ज़्यादा टिकाऊ थे, के उपलब्धी के बाद इनका उपयोग थम गया। आज के "बिल्ली की मूछों" को उनके नये रुप, शोटकी डायोड, में देखा जा सकता हैं।

द्वितीय विश्वयुद्ध

द्वितीय विश्व युध के दोरान उच्च-आवृति राडार अनुसन्धान पर जोर पडा, जिन्के प्रवर्धन के लिये नलिका पर आधारित अभिग्राहों नें काम करना बन्द कर दिया। कोटक मैग्नेट्रोन के विकास के बाद उच्च-आवृति प्रवर्धक (ऐम्प्लीफायर) की सक्त ज़रुरत पडी।

एक झक, बेल लैब्स के रसल ओह्ल नें "बिल्ली की मूछों" को दोबारा परीक्षा। कई दशकों से इसके प्रयोग में ना होने के कारण प्रयोगशाला में इसकी एक इकाई भी न थी और इसे वे ढूंड के लाये मेन्हैटन के किसी रेडियो के दुकान से। ओह्ल ने तहकीकात की कि बिल्ली की मूछें इतने गुणकारक क्यों थे। १९३९ में उन्होंने और भी शुद्धिकृत क्रिस्टल पर प्रयत्न किया और पाया की हालांकि इसका जुगती रवैया खत्म हो गया, पर इसके संसूचन की क्षमता भी गायब हो गयी। फिर एक दिन अचानक उनके पास पडे एक उच्चतम शुद्धता के क्रिस्टल ने काम करना शुरू कर दिया - ध्यान से देखने पर पता चला के इस क्रिस्टल के बीचों बीच एक छोटी सी दरार थी। फिर उनका ध्यान इस बात पर गया के संसूचक के कमरे में जगह बदलने से कभी यह काम करना शुरू कर दे तो कभी बंद कर दे। उन्होंने पता लगाया के क्रिस्टल का यह बर्ताव उस पर पड रहे रोशनी पर निर्भर करता है। जब उन्होंने इसे अन्य लोगों को दिखया, वॉल्टर ब्रैट्टैन ने तुरंत बूझ लिया कि क्रिस्टल के दरार पर किसी तरह का जोड़ बन रहा है।

भेद खुलने में देर नही लगी। क्रिस्टल मे दरार का कारण था दरार के दोनों तरफ के बीच दूषण मे असंतुलन, जिसके कारण जहाँ एक तरफ कुछ एलेक्ट्रोन अधिक थे, तो दूसरी तरफ कुछ कम। चूंकि दोनो भाग जुडे हुए थे, एलेक्ट्रोन के अधिक्षमता के तरफ से दूसरी तरफ का प्रवाह तब शुरू हुआ जब बैटरी को लगाने से बैटरी के विद्युत संचालन शक्ति से अधिक्षम एलेक्ट्रोन दूसरी तरफ कूद पडे और त्रुटिपूर्ण "छिद्रों" मे जा बैठे। मगर इससे एक अस्थिरता पैदा हो गयी! अधिक्षम पक्ष मे सहज संतुलन के लिये एक एलेक्ट्रोन की कमी हेई, जिसे बैटरी ने अपने एलेक्ट्रोन को दे कर पूर्ति की और दुसरे तरफ के अतिरिक्त एलेक्ट्रोन को अवशोषण करके बैटरी ने सम्पूर्ण चक्र को पूरा किया। इस तरह बिजली का धार प्रवाह स्थापित हो गया। बैटरी की दिशा को बदलने से यह प्रवाह थम जाता है क्योंकि "छिद्रों" में बैटरी के एलेक्ट्रोन भर जातें हैं और दूसरी तरफ के अधिक्षम एलेक्ट्रोनों के कारण एलेक्ट्रोन आगे नही बढ पाते।

दो ठोस क्रिस्टलों के बने इस डायोड के इस आचरण को अर्धचालन कहते हैं। डायोड के बंद होने की प्रवृत्ति जोड के पास के आवेश वाहकों के पृथक होने के कारण है और इस क्षेत्र को | अवक्षय क्षेत्र कहते हैं।

डायोड का विकास

अर्धचालकों के इस नये ज्ञान को सहेजने के लिये परडू विश्वविध्यालय, बेल लैब्स, एम आइ टी और [[शिकागो विश्वविध्यालय|शिकागो विश्वविध्यालयों] ने मिलकर नये बेहतर क्रिस्टल बनाये और तकनीकों को समापित किया। एक साल के अंदर ही जर्मेनियम उत्पादन में इतनी परिपक्वता आ गयी कि इनका प्रयोग सामरिक रडारों में शुरू हो गया।

ट्रांज़िस्टर का विकास

युध के बाद्, विलियम शोक्ली ने ट्रायोड जैसे अर्धचालक युक्ति को बनाने का प्रयास किया। इसके लिये उन्होंने निधीयन और लैब हासिल किया, जॉन बर्दीन और ब्रट्टैन के साथ काम करनअ शुरू किया।

ट्रांज़िस्टर के विकास के लिये अर्धचालकों मे एलेक्ट्रोंनों के सचलन को समझना महत्वपूर्ण था। अगर डायोड के उत्सर्जक (एमिटर) और समाहर्ता (कलेक्टर) के बीच के इस सचलन को किसी तरह नियंत्रित किया जा सके, तो प्रवर्द्धक (ऐम्प्लीफायर) का विकास किया जा सकेगा। यदि एक तरह के कृस्टल के दोनों तरफ विद्युत प्रचलन शक्ति को लगायें, तो एलेक्ट्रोंनों का प्रवाह स्थापित नही होता; अगर एलेक्ट्रोंन या "छिद्रों" (एलेक्ट्रोंन की त्रुटिपूर्णता) को तीसरे अंतक से अंतरावहित करें तो यह प्रवाह स्थपित हो सकता है। बडे कृस्टल की प्रवर्द्धक के रूप में उपयोगिता भी कम होती है, क्योंकि इसमें काफी मात्रा में एलेक्ट्रोंनों या छिद्रों का अंतरावहन करना पडता है। कुल मिलाकर, ट्रांज़िस्टर के बनाने में कृस्टल के अवक्षय क्षेत्र द्वारा छोटी दूरियों में एलेक्ट्रोंनों का प्रबंध और निवेश और निर्गम के संपर्क को सतह से निकटता पर निर्भर करती है।

ब्रट्टैन ने जब एसे युक्ति को बनाना शुरू किया, तो प्रवर्द्धन की झलकें दिखतीं और लुप्त हों जाती। एक बार तो आदिप्रयोग को पानी में डालने से अकस्मात इसने कार्य करना शुरू कर दिया (ओह्ल और ब्रट्टैन ने इस भेद को सुलझाने के लिये प्रमात्रा (क्वांटम) यांत्रिकी के शाख़, सतह भौतिकी को परिभाषित किया)।

कृस्टल के एलेक्ट्रोंनों की विशेषता होती है कि वे पास के आवेशों के प्रभाव से एकत्रित होतें हैं - उत्सर्जक की सतह के पास एलेक्ट्रोंन और समाहर्ता के सतह के पास छिद्र एकत्रित होते हैं विपरीत आवेशों को ढूंढते हुए। इन्हे बडी आसानी से इस सतह से हटाया जा सकता है कृस्टल के किसी भी सही कोने में थोडे से आवेशों के अंतरावहन से। अगर उत्सर्जक और समाहर्ता पास-पास हों, तो आवेशों के अंतरावहन से इनके बीच एलेक्ट्रोंनों का धार प्रवाह स्थापित हो जाता है। जहाँ आवेशों का यह अंतरावहन किसी हलके से संकेत (सिग्नल) का निरूपण करता है, उत्सर्जक और समाहर्ता के बीच का धार प्रवाह इस संकेत का प्रवर्द्धित उत्पाद होता है।

पहला ट्रांज़िस्टर

पहले ट्रांज़िस्टर की प्रतिकृति

बेल लैब्स में कई कोशिशों के बाद सफलता आखिर मिल ही गयी नोक-संयोग (पॉइन्ट कॉन्टैक्ट) ट्रांज़िस्टर के रूप में। सोने की पन्नी को प्लास्टिक के पच्चर पर चिपकाकर, फिर पच्चर की धार से सोने को हलका सा छील दिया गया। इससे मिला दो बहुत ही करीबी सोने का संयोग। अब इस प्लास्टिक के पच्चर को कृस्टल में गाड़कर कृस्टल के दोनों तरफ विद्युत संचालन शक्ति को लगाया गया। धारा प्रवाह तब हुआ जब कृस्टल के तल पर लगे दूसरे विद्युत शक्ति से कृस्टल के एलेक्ट्रोंन तल की तरफ बह गये। एसे हुआ नोक-संयोग ट्रांज़िस्टर का आविष्कार। २३ दिसम्बर १९४७ को अकसर ट्रांज़िस्टर का जन्म दिवस कहा जाता है। इस "PNP नोक-संयोग जर्मेनियम ट्रांज़िस्टर" की वाक प्रवर्द्धन शक्ति १८ गुना थी।

१९५७ में विलियम शोक्ली, जॉन बर्दीन और वॉल्टर ब्रैट्टैन को भौतिकी का नोबेल पुरस्कार मिला।

"ट्रांज़िस्टर" नाम का स्रोत

बेल लैब्स के आंतरिक मतदान में कई नाम सुझाए गये, जैसे की "अर्धचालक ट्रायोड", "ठोस ट्रायोड", आदि। जॉन पिएर्स के सुझाव, ट्रांज़िस्टर, को सबसे ज्यादा मत मिले। नाम का विच्छेद करें तो मिलता है "ट्रांस्फर" और "वैरिस्टर"।

ट्रांज़िस्टर डिज़ाइन मे तरक्की

शोक्ली को अप्रसन्नता थी कि उन्हे बर्दीन और ब्रैट्टैन के साथ ट्रांज़िस्टर के आविष्कार के श्रेय में भाग देना पडा। बैल लैब्स के वकीलों को जब पता चला के शोक्ली के लेखों मे कुछ समान्ताएँ थीं जूलियस एड्गर लिलियन के १९२५ के पेटेंट से, तो उन्होंने शोक्ली के नाम को ट्रांज़िस्टर के पेटेंट से बाहर रखने का विचार किया।

शोक्ली इससे अत्यंत नाराज हुए और उन ने ठान ली यह दिखाने की कि असली दिमाग किसका है। कुछ ही महीनों में एक नये तरह के ट्रांज़िस्टर का आविष्कार किया, जो नोक-संयोग ट्रांज़िस्टर की तुलना में स्थिर और टिकाऊ था। साठवें दशक में इस ट्रांज़िस्टर की धूम थी। यह और विक्सित हो कर द्विध्रुवीय जोड ट्रांज़िस्टर बना।

अस्थिरता की समस्याओं को दूर करने के बाद बची समस्या शुद्धता की। जर्मेनियम का शुद्धिकरण काफी जटिल था - इसमें कुछ सुधार शुद्धिकृत पानी के प्रयोग से हुआ, मगर फिर भी, जर्मेनियम के तापमान पर अतिसंवेदनशीलता के कारण यह सुझाया गया के सिलिकॉन एक बेहतर विकल्प होगा। बहुत कम वैज्ञानिकों ने इस पर ध्यान दिया। सिलिकॉन से बने ट्रांज़िस्टर को पहले बनाया गॉर्डन टील ने, जिनकी कंपनी, टेक्सस इन्सट्रुमैन्ट्स, ने भरपूर फायदा उठाया। इसके बाद जर्मेनियम का प्रयोग ट्रांज़िस्टरों में खत्म सा हो गया। "ज़ोन घोलन" के तकनीक का प्रयोग करके कृस्टकों को और भी शुद्ध किया गया।

ट्रांज़िस्टर के बने रेडियो और अन्य उपकरण मार्केट मे बहुतायत से मिलने लगे।

इन्हें भी देखें

सन्दर्भ

बाहरी कड़ियाँ