लम्बवत अक्ष का प्रमेय

मुक्त ज्ञानकोश विकिपीडिया से
imported>Rzuwig द्वारा परिवर्तित ०९:१२, ९ मार्च २०२२ का अवतरण (2409:4043:248A:D78:EB7:B412:E9EB:2695 (Talk) के संपादनों को हटाकर 27.97.74.236 के आखिरी अवतरण को पूर्ववत किया)
(अन्तर) ← पुराना अवतरण | वर्तमान अवतरण (अन्तर) | नया अवतरण → (अन्तर)
नेविगेशन पर जाएँ खोज पर जाएँ

यांत्रिकी में लम्बवत अक्ष का प्रमेय (perpendicular axis theorem) जड़त्वाघूर्ण निकालने का एक समीकरण है। यदि किसी पिण्ड का सम्पूर्ण द्रव्यमान केवल किसी एक समतल में स्थित हो तथा इस समतल में स्थित किन्ही दो परस्पर लम्बवत अक्षों के परित: उस पिण्ड का जड़त्वाघूर्ण ज्ञात हो तो इस प्रमेय का उपयोग करके इस समतल के लम्बवत किसी अक्ष के परित: उस पिण्ड का जड़त्वाघूर्ण निकाला जा सकता है। ये तीनों अक्ष उस तल में एकबिन्दुगामी भी होने चाहिये।

Thinplate01.JPG

माना कि X, Y, एवं Z तीन परस्पर लम्बवत अक्ष हैं और बिन्दु O पर मिलते हैं; तथा-

  • IX पिण्ड का X अक्ष के परित: जड़त्वाघूर्ण है;
  • IY पिण्ड का Y अक्ष के परित: जड़त्वाघूर्ण है;
  • IZ पिण्ड का Z अक्ष के परित: जड़त्वाघूर्ण है;

तो, लम्बवत अक्षों के प्रमेय के अनुसार,

<math>I_Z = I_X + I_Y.</math>

इस नियम का प्रयोग समान्तर अक्ष का प्रमेय एवं स्ट्रेच नियम के साथ करने पर अनेकानेक स्थितियों में पिण्डों के जड़त्वाघूर्ण निकाले जा सकते हैं।[[ये दोनों अच्छ एक दूसरे को उस बिंदु पर काटते है जिसमें होकर लंब अच्छ गुज़रता है}}

इन्हें भी देखें