अवमुख फलन

मुक्त ज्ञानकोश विकिपीडिया से
imported>Sanjeev bot द्वारा परिवर्तित १८:०४, २९ जनवरी २०१७ का अवतरण (बॉट: वर्तनी एकरूपता।)
(अन्तर) ← पुराना अवतरण | वर्तमान अवतरण (अन्तर) | नया अवतरण → (अन्तर)
नेविगेशन पर जाएँ खोज पर जाएँ
अवमुख फलन
उन्मुख फलन

गणित में, किसी अन्तराल में परिभाषित वास्तविक-मान फलन f(x) अवमुख फलन कहा जाता है यदि इस फलन के ग्राफ के किसी दो बिन्दुओं को मिलाने वाली सरल रेखा खण्ड सभी बिन्दुओं पर उस ग्राफ के ऊपर स्थित हो। स्विघात फलन f(x)=x2 तथा इक्सपोएनेन्शियल फलन f(x)=e2 अवमुख फलन के सुप्रसिद्ध उदाहरण हैं।

फलन f अवमुख फलन होगा, यदि उस डोमेन में x तथा y के सभी मानों तथा [0,1] अन्तराल में t के सभी मानों के लिये निम्नलिखित सम्बन्ध सत्य हो-

<math>f(tx+(1-t)y)\leq t f(x)+(1-t)f(y).</math>