संरेखण
संरेख (nomogram) एक ग्राफ पर आधारित गणना की युक्ति है। दूसरे शब्दों में, यह एक द्वि-विम आरेख (two-dimensional diagram) होता है जो किसी फलन का मोटा-मोटी (approximate) गणना की सुविधा प्रदान करता है। स्मिथ चार्ट, चाई-वर्ग वितरण का संरेख, दो प्रतिरोधों के समान्तरक्रम का संरेख आदि कुछ प्रमुख उदाहरण हैं।
संरेखण (Nomography) अपेक्षतया एक नया विषय है, जो समतल ज्यामिति और लघुगणकों के सरल सिद्धांतों पर आधारित है। यह विषय वर्णनात्मक ज्यामिति, अथवा आलेखी स्थैतिकी (Graphic Statics), के सदृश है। इसकी उत्पत्ति इंजीनियरी के क्षेत्र से हुई है। एम. दोकेन (M. D Ocagne) इस दिशा में अग्रणी हैं और इन्होंने 1900 ई. में इस शाखा का प्रवर्तन किया। संरेखण का ध्येय यह है कि एक विशेष प्रकार के समस्त प्रश्नों का, एक ही आलेख खींचकर, आलेखी हल निकाल लें।
संरेखण चार्टों का उद्देश्य होता है - तीन, चार अथवा अधिक चरों का सम्बन्ध दर्शाना। कुछ चार्टों में क्षैतिज और ऊर्ध्वाधर मापनियों के अतिरिक्त विकर्ण और वक्र मापनियाँ भी होती हैं। कभी कभी निर्देशांक और संरेखण चार्टों को मिलाना सुविधाजनक होता है। पाठक मापनियों के अंकन और उचित दूरियों के चुनाव के विषय में मानक ग्रंथों का अवलोकन कर सकते हैं।
परिचय
संयत्र चालन, प्राविधिक नियंत्रण और गवेषण आयोजनों में बहुत से दैनिक परिकलन प्रतिदिन करने पड़ते हैं, जिनमें व्यस्त वैज्ञानिकों और इंजीनियरों का बहुत समय नष्ट हुआ करता था। अपना समय बचाने के लिये ये लोग ऐसा काम कर्मचारियों को सौंप देते थे, जो आलेखी उपकरणों से काम करते-करते बड़े दक्ष हो जाते थे। संरेखण चार्ट (alignment charts), निर्देशांक सारणियाँ (coordinate tables) और संरेखण चार्ट (nomogram) इस काम के लिये बड़े सुगम और यथार्थ होते हैं।
मान लें कि कोई समीकरण अथवा अनुबंधों का एक कुलक दिया है। एक चार्ट ऐसा बनाया जाता है जिसपर एक ऐसी ऋजु रेखा खींची जा सके जो तीन मापनियों को ऐसे मानों पर काटे जो उक्त समीकरण, अथवा अनुबंध के कुलक को, संतुष्ट करें। ऐसे चार्ट को संरेखण चार्ट कहते हैं। यदि कोई दो मान दिए हों, तो उक्त चार्ट से तीसरा मान निकाला जा सकता है।
लाभ
संरेखण चार्ट से तीन लाभ होते हैं : सरलता, द्रुतता और यथार्थता (accuracy)। चार्ट के आकार, अभिकल्प (design) और अक्षों की अंकन विधि पर विचार करने से निकटतम मान निकाला जा सकता है।
(1) ऐसे समीकरण, अथवा एक ही प्रकार के एक घात सम्बन्ध, जिनसे दो चरों के पारस्परिक सम्बन्ध, निकाले जा सकें, यदि तीसरे चर का मान दिया हो।
(2) चरों के मानों का परास (range)।
(3) इस बात का ज्ञान कि दिया हुआ उदाहरण मानक (standard) अथवा मात्रकों (units) का चुनाव।
मापनियाँ कई प्रकार की होती हैं, जैसे एक समान (uniform) मापनी, लघुगणकीय (logarithmic) मापनी, वर्ग मापनी, घन (cube) मापनी, वर्गमूल मापनी इत्यादि।
मापांक इस बात पर निर्भर होता है कि प्रश्न में मानों का परास क्या है और कागज पर कितना स्थान प्राप्य है। संरेखण चार्टों में विभिन्न प्रकार की मापनियों के उपविभागों के अंकन और यथार्थ परिकलन (calculation) में तो बहुत समय लगता है। इसके बदले में हम जोज़ेफ़ लिप्का (Joseph Lipka) के बने-बनाए चार्टो से काम ले सकते हैं। हम विभिन्न पद्धतियों के मापांकों के विभिन्न मानों के लिये इनका उपयोग कर सकते हैं।
इस विधि की यही प्रक्रिया है कि प्रत्येक प्रकार के प्रश्न के लिये उपयुक्त मापनियाँ चुननी होती है और उनकी मध्यस्थ दूरियाँ भी उचित लेनी होती हैं।
इन्हें भी देखें
बाहरी कड़ियाँ
- Atmospheric nomogram (pdf) from the Department of Meteorology, University of Reading.
- PyNomo package to make nomograms with Python.
- The Art of Nomography describes the design of nomograms using geometry, determinants, and transformations.
- Nomograms for Wargames but also of general interest.
- nomogram.org is a site that uses nomograms for medical diagnosis of prostate and kidney cancers .
- Javascript Applet for constructing simple nomograms.
- Pressure-Temperature Nomographसाँचा:category handlerसाँचा:main otherसाँचा:main other[dead link] Quickly and easily estimate boiling points at various pressures.
- "The Art of Nomography I: Geometric Design
- R Package for drawing nomograms to obtain predicted values from regression models; examples are hereसाँचा:category handlerसाँचा:main otherसाँचा:main other[dead link] and hereसाँचा:category handlerसाँचा:main otherसाँचा:main other[dead link]