द्विनेत्री दूरदर्शी
द्विनेत्री (binocular), फील्ड ग्लास अथवा द्विनेत्री दूरदर्शी (binocular telescope) समान अथवा दर्पण सममिति वाले दूरदर्शी-युग्म है, जो साथ-साथ लगे होते हैं तथा एक दिशा में देखने के लिए परिशुद्धता से लगाए जाते हैं। एक साधरण द्विनेत्री दूरदर्शी, गैलिलिओ किस्म के दो दूरदर्शियों का युग्म होता है। द्विनेत्री का उपयोग पार्थिव वस्तुओं के देखने में होता है, इसलिए यह आवश्यक हो जाता है कि इस प्रकार के द्विनेत्री में वस्तु का सीधा प्रतिबिंब बने। गैलिलियों किस्म के दूरदर्शी सीधा प्रतिबिंब बनाते हैं। इसलिए साधारण द्विनेत्री दूरदर्शी के निर्माण में इसी प्रकार के दूरदर्शी का उपयोग होता है। साधारण द्विनेत्री दूरदर्शी को नाट्य दूरबीन कहते हैं।
टेलिस्कोप (मोनोक्युलर) के विपरीत दूरबीन (बाइनोक्युलर) उपयोगकर्ता को त्रि-आयामी छवि प्रस्तुत कराती है: अपेक्षाकृत नज़दीक की वस्तुओं को देखते समय दर्शक की दोनों आंखों के लिए थोड़े से अलग दृष्टिकोण से छवियां प्रस्तुत होती हैं जो कि मिल कर गहराई का प्रभाव प्रस्तुत करती हैं। मोनोक्युलर टेलिस्कोप के विपरीत इसमें भ्रम से बचने के लिए एक आंख को बंद अथवा ढकने की आवश्यकता नहीं पड़ती है। दोनों आंखों के प्रयोग से दृष्टिसंबंधी तीव्रता (रिज़ोल्यूशन) काफी बढ़ जाती है और ऐसा काफी दूर की वस्तुओं के लिए भी होता है जहां गहराई का आभास स्पष्ट नहीं होता। साँचा:category handler[<span title="स्क्रिप्ट त्रुटि: "string" ऐसा कोई मॉड्यूल नहीं है।">citation needed]
इतिहास
सबसे पहला द्विनेत्री दूरदर्शी सन् 1608 में लेपरहे (Lepperhey) द्वारा तैयार किया गया। यह उपकरणिका दो समांतर अक्ष के दूरदर्शियों का युग्म थी।
गैलिलिओ किस्म के दूरदर्शी में दो मुख्य दोष होते हैं :
1. इसका दृष्टिक्षेत्र (field of view) विस्तृत नहीं होता तथा
2. इसकी आवर्धन क्षमता (magnifying power) अधिक नहीं होती।
केपलर किस्म के दूरदर्शियों को खगोली दूरदर्शी (astronomical telescope) कहते हैं। दृष्टिक्षेत्र के विस्तार और आवर्धकता की दृष्टि से केपलर दूरदर्शी गैलिलिओ दूरदर्शी से अच्छा होता है, किंतु केपलर दूरदर्शी का उपयोग द्विनेत्री दूरदर्शी बनाने में इसलिए नहीं हो सकता था कि उसमें प्रतिबिंब उलटा बनता है। पोरो (Ignazio Poro, 1795-1875) ने एक ऐसे त्रिपार्श्व संयोजन (prism combination) का निर्माण किया जो केपलर दूरदर्शी में बने हुए उल्टे प्रतिबिंब को क्षैतिज और उर्ध्वाधर दोनों दिशाओं में सीधा करके दिखा सकता है। द्विनेत्री उपकर्णिकाओं के विकास में पोरो का उक्त आविष्कार बड़ा महत्वपूर्ण है। पोरो के त्रिपार्श्व संयोजन में दो समकोण त्रिपार्श्वी को इस प्रकार जोड़ा जाता है कि उनके कर्ण पृष्ठ (hypotenuse faces) एक दूसरे के संपर्क में रहते हैं और उनके पूर्ण परावर्तन पृष्ठ (total reflection faces) परस्पर समकोणिक होते हैं। पोरो के बाद ऐबे (Abbe) ने त्रिपार्श्व यौगिकों के प्रश्न पर विशेष रूप से विचार किया। आधुनिक त्रिपार्श्व द्विनेत्री (prism binocular) के विकास पर ऐबे के अनुसंधानों का विशेष प्रभाव पड़ा है।
त्रिपार्श्व द्विनेत्री
यह केपलर किस्म के दो दूरदर्शियों का युग्म होता है, जिसमें दूरदर्शी के अभिदृश्यक द्वारा बने हुए उल्टे प्रतिबिंब को दो समकोण समद्विबाहु त्रिपार्श्व सीधा कर देते हैं। ये त्रिपार्श्व दूरदर्शी के अभिदृश्यक और उपनेत्र के बीच में स्थित रहते हैं। त्रिपार्श्वी द्वारा जिस प्रकार क्षैतिज और उर्ध्वाधर दिशाओं में प्रतिबिंब को सीधा किया जाता है, वह चित्र 1. में बताया गया है। वस्तु से आई हुई प्रकाशकिरण अभिदृश्यक ले1 में से गुजरने के बाद प्रथम त्रिपार्श्व पर टकराती है। इस त्रिपार्श्व की वर्तक कोर (refracting edge) उर्ध्वाधर होती हैं, जिससे वह प्रतिबिंब को क्षैतिज धरातल में सीधा कर देती है। प्रथम त्रिपार्श्व से निकलने के बाद प्रकाशकिरणें दूसरे त्रिपार्श्व पर गिरती हैं, जिसकी वर्तक कोर क्षैतिज स्थिति में रहती है। इससे उर्ध्वाधर धरातल में प्रतिबिंब सीधा हो जाता है। दूसरे त्रिपार्श्व से निकलने के बाद प्रकाशकिरणें उपनेत्र ले2 में प्रवेश करती है। उपनेत्र द्वारा इस सीधे प्रतिबिंब का आवर्धन होता है। त्रिपार्श्वों के कारण दूरदर्शी की नलिका की लंबाई पर्याप्त कम हो जाती है।
द्विनेत्री सूक्ष्मदर्शी
यह दो सूक्ष्मदर्शियों का युग्म होता है जिसमें त्रिपार्श्वो की सहायता से प्रतिबिंब को सीधा किया जाता है।
त्रिविमदर्शी (Stereoscope)
इसकी विशेषता यह होती है कि इससे वस्तुओं के ठोसपन का अनुभव होता है। दो निकटस्थ वस्तुओं की दूरी अथवा गहराई का अनुभव नेत्र और वस्तुओं के अंतर पर निर्भर करता है। दोनों नेत्रों के रेटिनाओं पर बने हुए प्रतिबिंबों में कुछ अंतर होता है और इसी भिन्नता के कारण गहराई या ठोसपन का अनुभव होता है। त्रिविमदृष्टि का परास (range) 1,250 से 1,600 गज तक होता है।
साधारणतया त्रिविमदर्शी में एक ही वस्तु के दो फोटो इस प्रकार रखे जाते हैं कि उनसे पदार्थ के ठोसपन का अनुभव होने लगता है। आखों के बीच की दूरी () जितनी होती है उतनी ही दूरी पर स्थित दो लेंसों से वस्तु के दो फोटो ले लिए जाते हैं। अब इन दोनों फोटों को इस तरह व्यवस्थित किया जाता है कि दाहिनी आँख केवल दाहिनी ओर के लेंस से ली हुई फोटो को ही देख सके और दूसरी फोटो को न देख सके। इसी व्यवस्था को त्रिविमदर्शी कहते हैं।
प्रकाशीय डिज़ाइन
गैलीलियाई दूरबीन
ऐसा लगता है कि 17वीं सदी में टेलिस्कोप के आविष्कार के साथ ही ऐसे दो टेलिस्कोप को साथ लगा कर उनसे प्राप्त होने वाली बाईनॉकुलर दृष्टि के लाभों को खोजा जाने लगा। [१] सबसे शुरुआती दूरबीनें गैलीलियन प्रकाशिकी का प्रयोग करती थीं; वे एक उत्तल ऑब्जेक्टिव लेंस तथा अवतल आईपीस लेंस का प्रयोग करती थीं। गैलीलियन डिजाइन का यह फायदा है कि प्राप्त छवि सीधी होती है परन्तु दृश्य क्षेत्र संकरा होता है तथा इसका आवर्धन बहुत अधिक नहीं होता है। इस प्रकार के निर्माण का प्रयोग अभी भी काफी सस्ते मॉडलों में तथा ओपेरा ग्लासों व थियेटर ग्लासों में किया जाता है।
प्रिज़्म दूरबीन
केप्लेरियन प्रकाशिकी का प्रयोग करते हुए एक बेहतर छवि और उच्च आवर्धन प्राप्त किया जा सकता है, इसमें ऑब्जेक्टिव लेंस से प्राप्त छवि को धनात्मक आईपीस लेंस (दृष्टि सम्बन्धी) से देखा जाता है। इस विन्यास का एक नुकसान यह है कि प्राप्त छवि उलटी होती है। इन कमियों को दूर करने के कई तरीके हैं।
पोरो प्रिज़्म दूरबीनों का नाम इटली के प्रकाशिकी विद्वान् इग्नाज़ियो पोरो के नाम पर रखा गया है जिन्होंने इस छवि सुधार प्रणाली को 1854 में पेटेंट करवाया और बाद में कार्ल ज़िअस जैसे निर्माताओं द्वारा 1890 के दशक में इसमें सुधार किया गया।[१] इस प्रकार की दूरबीन जेड के आकार के दोहरे पोरो प्रिज़्म वाले विन्यास का प्रयोग छवि को सीधा करने में करती हैं। इस विशिष्टता के प्रयोग से चौड़ी दूरबीनों को ऐसे ऑब्जेक्टिव लेंस के साथ बना पाना संभव होता है जो काफी दूर होते हैं किन्तु आईपीस (eyepiece) द्वारा समायोजित होते हैं। पोरो प्रिज़्म डिजाइन का एक और लाभ यह है कि इनमें प्रकाश पथ छोटा हो जाता है जिसके कारण दूरबीन की वास्तविक लम्बाई ऑब्जेक्टिव लेंस की फोकल लम्बाई से छोटी हो जाती है तथा दोनों ऑब्जेक्टिव के बीच की बढ़ी हुई दूरी के कारण गहराई का बेहतर एहसास होता है।
एशिले विक्टर एमिल डॉब्रेस द्वारा 1870 में दी गयी डिज़ाइन के परिणामस्वरुप रुफ़ प्रिज़्म आधारित दूरबीनें आयीं। [२][३] अधिकांश रुफ़ प्रिज़्म आधारित दूरबीनें या तो एब्बे-कोनिग प्रिज़्म (एर्न्स्ट कार्ल एब्बे तथा अल्बर्ट कोनिग के नाम पर तथा कार्ल ज़िअस द्वारा 1905 में पेटेंट कराया गया) अथवा श्मिट-पेचन प्रिज़्म (1899 में अविष्कार हुआ) का प्रयोग छवि को सीधा करने तथा प्रकाश पथ को छोटा करने के लिए प्रयोग करती हैं। इनमें ऐसे ऑब्जेक्टिव लेंस होते हैं जो आईपीस की लगभग सीध में होते हैं।
रुफ़ प्रिज़्म डिज़ाइन कि सहायता से ऐसे उपकरणों का निर्माण हो पाता है जो पतले तथा पोरो प्रिज़्म की तुलना में छोटे होते हैं। यहां छवि की चमक में भी अंतर आता है। पोरो प्रिज़्म आधारित दूरबीनों में समान आवर्धन, वस्तु आकार तथा समक प्रकाशिकी गुणवत्ता वाली रूफ-प्रिज़्म आधारित दूरबीनों के मुकाबले अधिक चमक वाली छवि प्राप्त होती है, ऐसा इसलिए होता है क्योंकि रूफ प्रिज़्म डिज़ाइन में रुपहली सतह का प्रयोग किया जाता है जो कि प्रकाश के संचरण को 12% से 15% तक कम कर देती है। रूफ प्रिज़्म डिज़ाइन वाली दूरबीनों को अपने प्रकाशकीय तत्वों के सरेखण (कोलिमेशन) में अधिक सूक्ष्मता की भी आवश्यकता होती है। ऐसे में इनकी कीमत बढ़ जाती है क्योंकि उनकी डिज़ाइन उन्हें फैक्ट्री में ही कुछ निश्चित घटकों के साथ उच्च कोलिमेशन पर सेट किये जाने पर आधारित होती है। पोरो प्रिज़्म वाली दूरबीनों में उनके प्रिज़्म को कभी कभी पुनःरेखित करना होता है जिससे कि कोलिमेशन को पुनर्प्राप्त किया जा सके। स्थिर रेखन वाली रूफ डिज़ाइन का अर्थ यह हुआ कि उन्हें आमतौर पर दोबारा कभी पुनः कोलिमेशन की आवश्यकता नहीं पड़ेगी.[४]
ऑप्टिकल पैरामीटर
This section possibly contains original research. (April 2009) |
दूरदर्शी की डिज़ाइन आमतौर पर विशिष्ट अनुप्रयोग के लिए किया जाता है। ये विभिन्न डिज़ाईन कुछ विशिष्ट ऑप्टिकल मापदंड उत्पन्न करते हैं (इनमें से कुछ दूरबीन की प्रिज़्म कवर की प्लेट पर लिखे हो सकते हैं) ये मापदंड हैं:
आवर्धन
आईपीस की फोकल लम्बाई को ऑब्जेक्टिव की फोकल लम्बाई से विभाजित करने पर प्राप्त अनुपात दूरबीन की रेखीय आवर्धन शक्ति कहलाता है (कई बार इसे "व्यास" भी कहते हैं). उदाहरण के लिए आवर्धन शक्ति 7 के गुणक में होने का अर्थ यह होता है मानो देखने वाला व्यक्ति देखी जा रही वस्तु को 7 गुना निकट से देख रहा हो। आवर्धन की मात्रा इसपर निर्भर करती है कि दूरबीन किस अनुप्रयोग के लिए बनायी गयी है। चूंकि हाथ में पकड़ कर प्रयोग की जाने वाली दूरबीनों में आवर्धन कम होता है अतः वे कम्पन के प्रति कम संवेदनशील होती हैं। अधिक आवर्धन होने से दृश्य क्षेत्र छोटा हो जाता है।
ऑब्जेक्टिव का व्यास
ऑब्जेक्टिव लेंस का व्यास यह निर्धारित करता है कि एक छवि बनाने के लिए कितना प्रकाश एकत्रित किया जा सकता है। यह संख्या सीधे प्रदर्शन को प्रभावित करती है। जब आवर्धन और गुणवत्ता बराबर होती हैं, दूरबीन की दूसरी संख्या जितनी बड़ी होती है, प्राप्त छवि तनी ही उज्जवल तथा स्पष्ट होती है। इस प्रकार एक 8X40 द्वारा प्राप्त छवियां 8X25 की तुलना में अधिक उज्जवल तथा स्पष्ट होंगी, हालांकि दोनों ही किसी छवि को आठ गुना ही बड़ा करेंगी। 8x40 में सामने के बड़े लेंस प्रकाश के बड़े पुंज (प्यूपिल निकास) उत्पन्न करेंगे जो आईपीस में जायेंगे. इस प्रकार 8x40 से देखना एक 8x25 की तुलना में अधिक आरामदायक होगा। यह आमतौर पर मिलीमीटर में व्यक्त किया जाता है। प्रथागत रूप से दूरबीनों का श्रेणीकरण आवर्धन X ऑब्जेक्टिव के व्यास के रूप में किया जाता है, उदाहरण के लिए 7X50 .
दृश्य क्षेत्र
किसी दूरबीन का दृश्य क्षेत्र उसके ऑप्टिकल डिज़ाइन द्वारा निर्धारित होता है। इसे रेखीय मान से व्यक्त किया जाता है, जैसे 1000 गज़ (अथवा 1000 मीटर) से देखने पर कितने फीट (अथवा मीटर) चौड़ाई दिखाई देगी, अथवा कितने डिग्री का कोणीय मान देखा जा सकता है।
एक्ज़िट प्यूपिल
ऑब्जेक्टिव द्वारा प्राप्त प्रकाश को दूरबीन एक पुंज के रूप में केन्द्रित करती हैं, एक्ज़िट प्यूपिल जिसका व्यास ऑब्जेक्टिव के व्यास को आवर्धन शक्ति से विभाजित करके प्राप्त किया जाता है। सबसे अच्छी प्रकाश ग्राह्यता तथा उज्जवल छवि के लिए एक्ज़िट प्यूपिल का व्यास एक पूरी तरह फैली मानवीय आंख की पुतली के आकार का होना चाहिए जो लगभग 7 मिमी होता है तथा आयु के साथ कम होती जाती है। अगर दूरबीन से निकलने वाला प्रकाश शंकु उस आंख की पुतली के आकार से बड़ा होगा जिसमे इसे प्रवेश करना है तो, पुतली के आकार के अतिरिक्त अजो भी प्रकाश है वह व्यर्थ हो जायेगा अर्थात उसके माध्यम से नेत्रों को कोई सूचना नहीं मिलेगी. दिन के समय आंख की पुतली लगभग 3 मिमी फैल जाती है जो कि 7X21 दूरबीन के एक्ज़िट प्यूपिल के बराबर होती है। अधिक बड़े 7x50 दूरबीन पुतली से ज्यादा बड़े प्रकाश शंकु का निर्माण करते हैं, जो कि दिन के समय व्यर्थ हो जाती है। इसलिए एक बड़े उपकरण को साथ लेकर चलना विशेष उपयोगी नहीं लगता. हालांकि, एक बड़ा एक्ज़िट प्यूपिल से नेत्र को उस स्थान पर रखना आसान हो जाता है जहां से इसे प्रकाश मिल सके: प्रकाश शंकु में कहीं भी आंख लगायी जा सकती है। आंख लगाने की यह आसानी छवि को अस्पष्ट होने (विगनेटिंग) से बचाती है, जो कि प्रकाश का मार्ग आंशिक रूप से अवरुद्ध होने पर कालेपन अथवा धुंधलेपन के रूप में हो सकता है। और, इसका यह मतलब भी है कि छवि को जल्दी से ढूंढा जा सकता है जो पक्षियों या पशुओं के अधिक गतिशील खेलों को देखने के दौरान महत्वपूर्ण है। संकीर्ण एक्ज़िट प्यूपिल वाली दूरबीनें शीघ्रता से थका सकती हैं क्यंकि सही छवि प्राप्त करने के लिए उपकरण को ठीक आंखों के सामने होना चाहिए। अंत में, कई लोग अपनी दूरबीनों का प्रयोग शाम के समय, धुंधलके के समय, तथा रात में करते हैं जब उनकी पुतलियां बड़ी होती हैं। इस प्रकार दिन के समय का एक्ज़िट प्यूपिल हमेशा सबसे उपयोगी मानक नहीं होता है। सुविधा, उपयोग में आसानी और अनुप्रयोगों में विभिन्नता के लिए बड़ी दूरबीनें जिनमें बड़े एक्ज़िट प्यूपिल हों, संतुष्ट करने वाले विकल्प होते हैं, हालांकि दिन में उनकी क्षमता का पूरी तरह प्रयोग नहीं हो पाता.
आई रिलीफ
आई रिलीफ पिछले आईपीस लेंस से एक्जिट प्यूपिल अथवा नेत्र बिंदु के बीच की दूरी को कहा जाता है।[५] यह वह दूरी है जो देखने वाले को आईपीस से अपनी आंख के बीच रखनी होती है जिससे उसे एक स्पष्ट छवि प्राप्त हो सके। आईपीस की फोकल लम्बाई जितनी बड़ी होगी, आई रिलीफ उतनी ही अधिक होगी। दूरबीनों में आई रिलीफ कुछ मिलीमीटर से लेकर 2.5 सेंटीमीटर अथवा उससे भी अधिक हो सकती है। चश्मा पहनने वालों के लिए आई रिलीफ विशेष रूप से महत्वपूर्ण होती है। चश्मा पहनने वाले व्यक्ति की आंख आमतौर से दूरबीन के आईपीस से दूर होती है जिसकी वजह से यह आवश्यक हो जाता है कि दूरबीन की आइ रिलीफ अधिक हो जिससे कि वह व्यक्ति पूरा दृश्य क्षेत्र देख सके। छोटी आई रिलीफ वाली दूरबीनों के प्रयोग में वहां अधिक दिक्कत हो सकती है जहां उन्हें स्थिरता पकड़ने में मुश्किल हो।
निकट फोकस दूरी
निकट फोकस दूरी वह कम से कम दूरी है जहां दूरबीन फोकस कर सकती हैं। यह दूरी 1 मीटर से 30 मीटर तक हो सकती है और यह दूरबीन के डिज़ाइन पर निर्भर करती है।
यांत्रिक डिजाइन
फोकस और समायोजन
चूंकि दूरबीनों का प्रयोग जिन वस्तुओं के देखने में किया जाता है वे किसी निश्चित दूरी पर नहीं होती हैं, अतः उनमें फोकस करने की व्यवस्था होना आवश्यक है जिससे दृष्टि तथा ऑब्जेक्टिव लेंसों की दूरी को बदला जा सके। परंपरागत रूप से, फोकस करने के लिए दो अलग अलग व्यवस्थाओं का इस्तेमाल किया जाता है। जिन दूरबीनों में "स्वतंत्र फोकस" की व्यवस्था होती है, उनमें दो अलग-अलग टेलीस्कोपों को स्वतंत्र रूप से उनके आईपीस से फोकस किया जाता है। पारंपरिक रूप से भारी फ़ील्ड प्रयोग, उदाहरण के लिए सैन्य अनुप्रयोगों के लिए, स्वतंत्र फोकस वाली दूरबीनों का प्रयोग किया जाता है। चूंकि सामान्य प्रयोगकर्ता दूरबीनों के दोनों ट्यूबों को एक ही समायोजन से फोकस करना अधिक सुविधाजनक पाते हैं, एक दूसरे प्रकार की दूरबीनें "केन्द्रीय फोकस" का प्रयोग करती हैं जिनमें एक केन्द्रीय फोकस करने वाला पहिया लगा होता है जिससे दोनों ट्यूबों को एक साथ समायोजित किया जा सकता है। इसके अतिरिक्त, दोनों आईपीस भी दर्शक की आंखों के अंतर की क्षतिपूर्ति करने के लिए समायोजित किये जा सकते हैं (आमतौर से ऐसा आईपीस को उसके माउंट में घुमा कर किया जाता है). आईपीस को उसके माउन्ट में घुमा कर समायोजित किये जाने से होने वाले फोकल परिवर्तन को अपवर्तन शक्ति की प्रचलित इकाई डायोप्टर में मापा जाता है इसी लिए कई बार समायोजन किये जा सकने वाले आईपीस को भी "डायोप्टर" ही कहा जाता है। किसी व्यक्ति विशेष के लिए यह समायोजन किये जाने के बाद अलग अलग दूरियों पर स्थित वस्तुओं को देखने के लिए फोकस करने वाले पहिये की सहायता से दोनों ट्यूबों को फोकस किया जाता है और आईपीस को दोबारा समायोजित नहीं करना पड़ता है। अधिकांश आधुनिक दूरबीनों में एक कब्जेदार बनावट की सहायता से दोनों अलग अलग टेलीस्कोपों के बीच की दूरी को भी परिवर्तित किया जा सकता है जिससे विभिन्न लोगों की दोनों आखों के बीच की दूरी के अनुसार इन्हें सेट किया जा सकता है। अधिकांश वयस्कों की दोनों पुतलियों की बीच की दूरी (इंटरप्यूपिलरी डिस्टेंस) (साधारणतया 56 मिमी) के अनुकूल बनी होती है।[६]
कई दूरबीनें "फोकस फ्री" अथवा "फिक्स्ड फोकस" वाली होतीं हैं, जिनमें फोकस करने की कोई यंत्रावली नहीं होती है। उनका डिज़ाइन स्थिर दृश्य क्षेत्र के लिए होता है जो अपेक्षाकृत निकट की वस्तुओं से लेकर अनंत तक होता है जिसमें एक बड़ी हाइपरफोकल दूरी होती है। इन डिजाइनों को समझौतापूर्ण डिज़ाइन माना जाता है, इसमें सुविधा तो है, परन्तु वे वस्तुएं जो इनकी डिज़ाइन के आधार पर इनके परास के बहार होती हैं, वे ठीक से नहीं दिखाई पड़तीं.[७]
कुछ दूरबीनें समायोजन योग्य आवर्धन प्रदान करतीं हैं, इन्हें ज़ूम बाईनॉकुलर कहते हैं, इनका उद्देश्य प्रयोगकर्ता को एक ही दूरबीन रख कर उससे "ज़ूम" लीवर का प्रयोग करते हुए विभिन्न आवर्धन स्तर प्राप्त करना होता है। ऐसा करने के लिए लेंसों के समायोजन की एक जटिल श्रृंखला की आवश्यकता होती है, जैसा कि ज़ूम कैमरा लेंसों में किया जाता है। ये डिजाईन समझौता अथवा हथकंडा[८] समझे जाते हैं क्योंकि ये दूरबीन में विशाल आकार, जटिलता तथा नाजुकता को बढ़ा देती हैं। जटिल प्रकाशीय पथ के कारण दृश्य क्षेत्र कम हो जाता है तथा उच्च ज़ूम के स्तर पर चमक कम हो जाती है।[९] इस प्रकार के मॉडलों में ज़ूम की पूरी परास में, दोनों आंखों के लिए बराबर आवर्धन रखना आवश्यक होता है तथा आंखों को तनाव व थकान से बचाने के लिए समंतरण भी रखना होता है।[१०]
छवि स्थिरता
दूरबीनों में इमेज स्थिरीकरण तकनीक का प्रयोग करते हुए छवि को हिलने से बचाया तथा उच्च आवर्धन का प्रयोग किया जा सकता है। वे कल-पुर्ज़े जो छवि का स्थान बदलते हैं वे ऊर्जा से चलने वाले जाइरोस्कोप अथवा ऐसी यांत्रिकी से दृढ़तापूर्वक स्थिर रखे जाते हैं जो जाइरोस्कोप या स्थायित्व जांचने वाले यंत्रो की सहायता से संचालित हो, कई बार उन्हें ऐसे लगाया जाता है कि वे कम्पन गति के प्रभाव के विपरीत क्रिया करते हैं। स्थिरीकरण को प्रयोगकर्ता की इच्छा के अनुकूल शुरू या बंद किया जा सकता है। इन तकनीकों से दूरबीन को 20X तक के आवर्धन के साथ हाथ में पकडे जा सकने योग्य बनाया जा सकता है, साथ ही कम शक्ति वाले उपकरणों में छवि स्थिरीकरण की गुणवत्ता को भी बढाया जा सकता है। यहां पर कुछ कमियां भी हैं: स्थिरीकरण का प्रयोग न करने वाली श्रेष्ठ दूरबीनों को त्रिपाद पर लगाने के बाद, उनसे प्राप्त तस्वीर कहीं बेहतर होती है, साथ ही स्थिरीकरण वाली दूरबीनें अपनी समतुल्य स्थिरीकरण का प्रयोग न करने वाली दूरबीनों से महंगी तथा भारी होती हैं।
संरेखण
अच्छी तरह से समांतरित दूरबीन को, मानव आंखों से देखे और मानव मस्तिष्क द्वारा संसाधित किये जाने पर, एक एकल, स्पष्टतया त्रि-आयामी छवि दिखनी चाहिए और ऐसा नहीं लगना चाहिए कि वह थोड़े से अलग दृष्टिकोण से दो अलग-अलग तस्वीरें देखी जा रही है। इस अनुकूलन के अभाव में, भ्रमपूर्ण असुविधा तथा दृष्टि संबंधी थकान हो सकती है, परन्तु दृष्टि क्षेत्र फिर भी सम्पूर्ण देखा जा सकता है। दूरबीन से दिखने वाले सिनेमाई दृश्य जिसमें दो आंशिक रूप से आच्छादित आठ की संख्या के गोले जैसे दिखते हैं, ऐसा वास्तविकता में नहीं होता है।
प्रिज्मों को थोडा हिला डुला कर गलत संरेखण को अक्सर दूरबीनों को खोले बिना पेच घुमा कर ठीक किया जाता है अथवा ऐसा ऑब्जेक्टिव की स्थिति बदल करके भी करते हैं, जिसके लिये ऑब्जेक्टिव की सतह के बाहर विकेन्द्रित चूड़ियां होती हैं। आमतौर पर संरेखण किसी पेशेवर द्वारा किया जाता है हालांकि संरेखण त्रुटियों को पहचानने तथा उन्हें संरेखित करने के लिये निर्देश इंटरनेट पर भी मिल जाते हैं।
ऑप्टिकल कोटिंग
किसी साधारण दूरबीन में 6 से 10 प्रकाशीय तत्त्व प्रयुक्त होते हैं[११] जिनका विशिष्ट प्रयोग होता है, तथा कांच से हवा के संपर्क वाली सतहें 16 तक हो सकती हैं, इसलिए दूरबीन निर्माताओं को तकनीकी कारणों से विभिन्न प्रकार की ऑप्टिकल कोटिंग का प्रयोग करना होता है जिससे उपकरण से प्राप्त छवि की गुणवत्ता बढ़ाई जा सके।
गैर परावर्तक कोटिंग
प्रतेक सतह पर परावर्तन के कारण होने वाली प्रकाश की हानि को एंटी-रेफलेक्टिव कोटिंग से कम किया जाता है। एंटी-रेफलेक्टिव कोटिंग के माध्यम से दूरबीन के अन्दर "लुप्त" प्रकाश, जो कि प्राप्त छवि को धुंधला (निम्न कंट्रास्ट) बना सकता है, को कम किया जाता है। 8x40 की दूरबीन जिसमें अच्छी ऑप्टिकल कोटिंग का प्रयोग हुआ हो, बिना कोटिंग वाली 8x50 दूरबीन से बेहतर तथा उज्जवल छवि प्रस्तुत कर सकती है।साँचा:category handler[<span title="स्क्रिप्ट त्रुटि: "string" ऐसा कोई मॉड्यूल नहीं है।">citation needed] एक पारंपरिक लेंस कोटिंग सामग्री मैग्नीशियम फ्लोराइड है जो परावर्तन को 5% से 1% तक कम कर देता है। आधुनिक लेंस कोटिंग जटिल बहु-परतों से मिलकर बनती है और केवल 0.25% या उससे कम प्रतिबिंबित करती है, साथ ही अधिकतम चमक और प्राकृतिक रंगों के साथ एक अच्छी छवि देती है।
फेज़ करेक्शन कोटिंग
रूफ प्रिज्म वाली दूरबीनों में प्रकाश दो रास्तों में विभाजित हो जाता है जो रूफ प्रिज्म की पीठ के किसी भी तरफ से परावर्तित होता है। आधा प्रकाश रूफ की सतह 1 से सतह 2 पर परावर्तित होता है। प्रकाश का बचा हुआ आधा हिस्सा सतह 2 से सतह 1 पर परावर्तित होता है। इस कारण प्रकाश आंशिक रूप से पोलराइज़ हो जाता है (ऐसा ब्रुस्टर के कोण नामक घटना के कारण होता है). इसके आगे होने वाले परवर्तनों से इसका पोलराइज़ सदिश बदलता है परन्तु यह प्रत्येक पथ में फोकाल्ट पेंडुलम के सदृश बदलता है। अलग अलग पथों पर जा रहा प्रकाश जब मिलता है, तब प्रत्येक पथ के पोलराइज़ सदिश मेल नहीं खाते हैं। पोलराइज़ सदिशों के बीच के कोण को फेज़ शिफ्ट या ज्यामितीय फेज़ अथवा बेरी फेज़ कहा जाता है। भिन्न ज्यामितीय फेज़ वाले अलग पथों के टकराने पर छवि में घटती-बढ़ती तीव्रता का वितरण प्राप्त होता है, जिससे प्राप्त होने वाला कंट्रास्ट व रिज़ोल्यूशन पोरो प्रिज्म प्रणाली के मुकाबले कम हो जाता है।[१२] रूफ प्रिज्म की रूफ सतह पर इन अवांछित हस्तक्षेप प्रभाव को कम करने हेतु कुछ विशेष डाईविद्युतीय कोटिंग पदार्थों का वाष्प निरूपण किया जाता है, इन पदार्थों को फेज़-सुधार कोटिंग अथवा पी-कोटिंग कहते हैं। यह कोटिंग दो पथों के बीच ज्यामितीय फेज़ में अंतर को ठीक करके दोनों पथों से आ रहे प्रकाश को एक ही फेज़ में परिवर्तित करती है जिससे टकराव के कारण छवि ख़राब नहीं होने पाती है।
श्मित-पेचन रूफ प्रिज़्म अथवा एब्बे-कोनिग रूफ प्रिज़्म का प्रयोग कर रही दूरबीनें फेज़ कोटिंग से विशेष रूप से लाभान्वित होती हैं। पोरो प्रिज्म आधारित दूरबीनें अलग अलग पथ से आ रही प्रकाश किरणों को पुनः एकत्रित नहीं करतीं अतः इन्हें फेज़ कोटिंग से कोई विशेष लाभ नहीं होता।
धात्विक दर्पण कोटिंग्स
श्मित-पेचन रूफ प्रिज़्म का प्रयोग कर रही दूरबीनों में रूफ प्रिज्म की सतहों को दर्पण कोटिंग किया जाता है ताकि उसकी किसी एक सतह पर पड़ रहा प्रकाश यदि सीमान्त कोण से कम पर पड़े तो उसका सम्पूर्ण आतंरिक परावर्तन न हो जाये. दर्पण कोटिंग के बिना अधिकांश प्रकाश की क्षति हो जाएगी. श्मित-पेचन रूफ प्रिज़्म में अल्युमिनियम दर्पण कोटिंग (87% से 93% परावर्तनीयता) अथवा रजत दर्पण कोटिंग (95% से 98% परावर्तनीयता) का प्रयोग होता है।
पुराने डिजाइन में रजत दर्पण कोटिंग की जाती थी परन्तु सील न की गयी दूरबीनों में इसका ऑक्सीकरण हो जाता था तथा ये परावर्तनीयता खो देती थीं। बाद में बिना सील की गयी डिजाइनों में अल्युमिनियम दर्पण कोटिंग का इस्तेमाल किया गया क्योंकि यह धूमिल नहीं पड़ता है, हालांकि यह चांदी की तुलना में कम परावर्तनीयता देता है। आधुनिक डिजाइन या तो एल्यूमीनियम या चांदी का उपयोग करते हैं। आधुनिक उच्च गुणवत्ता वाली डिजाइनों में चांदी का प्रयोग किया जाता है, इनमें नाइट्रोज़न अथवा आर्गन से भर कर सील कर दिया जाता है जिससे रजत दर्पण कोटिंग कभी धूमिल नहीं पडतीं.[१३]
पोरो प्रिज्म तथा रूफ प्रिज्म वाली दूरबीनें जो एब्बे-कोनिग रूफ प्रिज़्म का प्रयोग करती हैं, इनको दर्पण कोटिंग का प्रयोग नहीं करना पड़ता क्योंकि ये प्रिज्म 100% परावर्तनीयता सम्पूर्ण आतंरिक परावर्तन से प्राप्त कर लेते हैं।
डाई-इलेक्ट्रिक दर्पण कोटिंग
डाई-इलेक्ट्रिक दर्पण कोटिंग का प्रयोग श्मित-पेचन रूफ प्रिज़्म में डाई-इलेक्ट्रिक दर्पण का प्रभाव पैदा करने के लिए किया जाता है।साँचा:jargon अधात्विक डाई-इलेक्ट्रिक दर्पण कोटिंग को बनाने के लिए रूफ प्रिज्म की परावर्तनीय सतह पर एकान्तरित रूप से उच्च तथा निम्न अपवर्तन सूचकांक वाले तत्वों को निक्षेपित किया जाता है। प्रत्येक एकल बहुपरत प्रकाश, एक पतले आवृत्ति पुंज को परावर्तित करती है जिससे ऐसी कई परतें, इसलिए सफ़ेद प्रकाश को परावर्तित करने के लिए भिन्न रंगों में समायोजित अनेकों बहुपरत प्रकाश की आवश्यकता होती है। यह बहुपरत कोटिंग प्रिज्म की सतह पर वितरित ब्राग परिवर्तक की तरह कार्य करते हुए परावर्तनीयता को बढ़ा देती है। एक अच्छी तरह से डिजाइन की गयी डाई-इलेक्ट्रिक कोटिंग, दृश्य प्रकाश वर्णक्रम में 99% से अधिक परावर्तनीयता प्रदान करती है। यह परावर्तनीयता अल्युमिनियम दर्पण कोटिंग (87% से 93%) अथवा रजत दर्पण कोटिंग (95% से 98%) से कहीं बेहतर है।
पोरो प्रिज्म तथा रूफ प्रिज्म वाली दूरबीनें जो एब्बे-कोनिग रूफ प्रिज़्म का प्रयोग करती हैं, इन्हें डाई-इलेक्ट्रिक कोटिंग का प्रयोग नहीं करना पड़ता क्योंकि ये प्रिज्म सम्पूर्ण आतंरिक परावर्तन का प्रयोग करते हुए अति उच्च परावर्तनीयता प्राप्त कर लेते हैं।
कोटिंग के वर्णन के लिए शब्द
- सभी दूरबीनों के लिए
किसी कोटिंग की उपस्थिति को आमतौर पर निम्नलिखित शब्दों द्वारा दूरबीन पर चिह्नित किया जाता है:
- कोटेड ऑप्टिक्स : एक या अधिक सतहों पर एकल सतह एंटी-रेफलेक्टिव कोटिंग.
- फुल्ली कोटेड : सभी हवा-से-ग्लास सतहों पर एकल सतह एंटी-रेफलेक्टिव कोटिंग. हालांकि, प्लास्टिक के लेंस, यदि उनका उपयोग हुआ है, कोटेड नहीं हैं।साँचा:category handler[<span title="स्क्रिप्ट त्रुटि: "string" ऐसा कोई मॉड्यूल नहीं है।">citation needed]
- मल्टी-कोटेड : एक या अधिक सतहों पर बहु-सतह एंटी-रेफलेक्टिव कोटिंग.
- फुल्ली मल्टी-कोटेड : सभी सतहों पर बहु-सतह एंटी-रेफलेक्टिव कोटिंग.
- केवल रूफ प्रिज्म वाली दूरबीनों के लिए (पोरो प्रिज्म के लिए आवश्यक नहीं)
- फेज़-कोटेड अथवा पी-कोटिंग : रूफ प्रिज्म पर फेज़-सुधार कोटिंग
- एल्यूमीनियम कोटेड : रूफ प्रिज्म दर्पण पर अल्युमिनियम की कोटिंग. यदि दर्पण कोटिंग का उल्लेख नहीं है, तो मूल रूप से इसका प्रयोग होता है।
- रजत कोटिंग : रूफ प्रिज्म पर चांदी की कोटिंग
- डाई-इलेक्ट्रिक कोटेड : रूफ प्रिज्म दर्पणों पर डाई-इलेक्ट्रिक कोटिंग
अनुप्रयोग
This section possibly contains original research. (April 2009) |
सामान्य उपयोग
हाथ में पकड़ कर प्रयोग की जा सकने वाली दूरबीनें थियेटर में प्रयुक्त 3X10 ओपेरा ग्लास से लेकर बाहर इस्तेमाल की जा सकने वाली 7 से 12 मीटर व्यास आवर्धन और 30 से 50 मिमी ऑब्जेक्टिव लेंस वाली होती हैं।
कई पर्यटक स्थलों पर सिक्का-चालित दूरबीन, स्टैंड पर लगी होती हैं, जिसकी सहायता से वे उस पर्यटन-आकर्षण को निकट से देख पाते हैं। ब्रिटेन में 20 पेंस में आमतौर पर दूरबीन से दो मिनट देखने को मिलता है जबकि संयुक्त राज्य में एक या दो क्वार्टर में डेढ़ से ढाई मिनट तक देखने दिया जाता है।
रेंज खोजना
कई दूरबीनों में रेंज खोजने के लिए रेटिकल (पैमाना) दृश्य क्षेत्र में ही दिखता है। यह पैमाना, ऊंचाई ज्ञात होने पर (अथवा अनुमान लगाये जा सकने पर) देखी जा रही वस्तु की दूरी का अनुमान लगाने में सहायता करता है। नाविकों की साधारण 7X50 दूरबीन में पैमाने के चिन्हों के बीच की दूरी लगभग 5 मिल को व्यक्त करती है।[१४] एक मिल, 1000 मीटर की दूरी से देखे जाने पर एक मीटर ऊंची वस्तु के शीर्ष तथा आधार के बीच बनने वाले कोण को कहा जाता है।
इस प्रकार एक ज्ञात ऊंचाई पर स्थित वस्तु से दूरी का अनुमान लगाने के लिए समीकरण इस प्रकार होगा:
- <math>\mathrm{D}= \frac{OH}{\text{Mil}}\times 1000</math>
जहां:
- <math>\mathrm{D}</math> देखी जा रही वस्तु से मीटर में दूरी है।
- <math>OH</math> वस्तु की ऊंचाई है।
- <math>Mil</math> मिल की संख्या में वस्तु की ऊंचाई है।
एक साधारण 5 मिल पैमाने पर (जहां प्रत्येक चिन्ह 5 मिल के बराबर है), एक प्रकाश-स्तम्भ जो कि 3 चिन्ह ऊंचा दिख रहा हो, वास्तव में 120 मीटर ऊंचा तथा 8000 मीटर दूर होगा।
- <math>\mathrm{8000 m}= \frac{120 m}{15 \text{mil}}\times 1000</math>
सेना
दूरबीन के सैन्य उपयोग का एक लंबा इतिहास है। 19वीं सदी के अंत तक गैलीलियन डिजाइन व्यापक रूप से प्रयोग में था तथा उसके पश्चात पोरो प्रिज्म डिज़ाइन का प्रयोग किया जाने लगा। सामान्य सैन्य प्रयोग के लिए बनायीं गयी दूरबीनें अपनी असैन्य समकक्षों के मुकाबले कहीं अधिक मज़बूत बनायीं जाती हैं। सैन्य उपयोग में नाज़ुक केन्द्रीय फोकस के स्थान पर स्वतन्त्र फोकस का प्रयोग किया जाता है, इससे दूरबीन को वातावरण के लिहाज़ से अभेद्य बनाने में आसानी होती है तथा प्रभावशाली वातावरण अनुकूलन प्रदान किया जा सकता है। सैन्य दूरबीनों के प्रिज्मों पर अल्युमिनियम की अतिरिक्त कोटिंग की जाती है जिससे कि भीग जाने पर भी उनकी परवर्तनीयता कम ना हो। दूरबीन का एक और प्रयुक्त रूप "ट्रेंच दूरबीन" होता है जो दरसल दूरबीन व पेरिस्कोप का मिश्रण होता है, इसका प्रयोग तोपखाने का पता लगाने में किया जाता है, इसका प्रयोग करते समय सैनिक अपना सर मुंडेर के नीच रखते हुए देख सकता है, जिससे उसे सुरक्षा प्राप्त होती है।
शीत युद्ध काल की सैन्य दूरबीनों में कई बार पैसिव संवेदक लगाकर उन्हें सक्रिय इन्फ्रारेड उत्सर्जनों को देखने लायक बना दिया जाता है, जबकि आधुनिक दूरबीनों में निष्पादक लगे होते हैं जो उन्हें लेज़र किरणों को हथियार के रूप में प्रयोग किये जाने से रोकता है। इसके अतिरिक्त सैन्य प्रयोग के लिए डिज़ाइन दूरबीनों में रेंज का अनुमान लगाये जाने हेतु स्टीडियामेट्रिक रिटाईकल (टेलीस्कोपिक उपकरणों से दूरी मापने की युक्ति) भी होती है।
समुद्र में प्रयोग किये जाने हेतु सैन्य तथा असैन्य उपयोगों के लिए अलग-अलग दूरबीनें उपलब्ध हैं। हाथ में पकड़ कर प्रयोग की जा सकने वाली दूरबीनें 5X अथवा 7X होती हैं परन्तु इनमें काफी बड़े प्रिज्म के साथ ही ऐसे आईपीस होते हैं जो आंखों को काफी आराम प्रदान करते हैं। यह ऑप्टिकल संयोजन दूरबीन को आंखों के सापेक्ष कम्पित होने पर प्राप्त छवि को धुंधला होने अथवा अस्पष्ट होने से बचाता है। बड़े, उच्च आवर्धन वाले मॉडल जिनमें बड़े ऑब्जेक्टिव लेंस होते हैं, उन्हें स्टैंड पर लगा के प्रयोग करने योग्य बनाया जाता है।
बहुत बड़ी नौसैनिक रेंज-फाइंडर दूरबीनों का प्रयोग (इनके ऑब्जेक्टिव लेंस का दृष्टि विन्यास 15 मीटर तक तथा भार 10 टन तक होता था तथा इनका प्रयोग द्वितीय विश्व-युद्ध में 25 किमी की दूरी से तोप के निशाने देखने में किया जाता था) किया जाता रहा है, परन्तु 20 सदी के उत्तरार्ध की तकनीक ने इनका अनुप्रयोग अनावश्यक बना दिया।
खगोल शास्त्र
दूरबीनों का प्रयोग शौकिया खगोल-शास्त्रियों द्वारा व्यापक रूप से किया जाता है; उनका विस्तृत दृश्य क्षेत्र धूमकेतु तथा सुपरनोवा देखने वालों के लिए (दानवाकार दूरबीनें) तथा सामान्य अवलोकन के लिए (उठा कर ले जाने योग्य) विशेष रूप से उपयोगी बनाता है। 70 मिमी तथा इससे बड़ी रेंज की कुछ दूरबीनें पृथ्वी सम्बन्धी अवलोकन के अनुकूल होती हैं; वास्तविक खगोलीय दूरबीनों (90 मिमी तथा इससे बड़ी) की डिज़ाइन में प्रिज्मों का प्रयोग प्रकाश सम्प्रेषण बढ़ा कर छवि को सही रूप से प्रदर्शित करने में होता है। ऐसी दूरबीनों में बदलने योग्य आईपीस होते हैं जिनसे आवर्धन को बढाया या कम किया जा सकता है तथा इनका डिज़ाइन जल-रोधी अथवा विषम प्रयोग के लिए नहीं होता है।
सेरेस, नेप्च्यून, पलास, टाइटन, तथा बृहस्पति के गैलीलियन चंद्रमा, जो नंगी आंखों से नहीं दिखाई देते, दूरबीन की सहायता से आसानी से देखे जा सकते हैं। हालांकि प्रदूषण रहित आकाश में बिना किसी सहायता के देखे जा सकने वाले युरेनस तथा वेस्टा को दूरबीन की सहायता से सहजता से देखा जा सकता है। 10X15 की दूरबीनें +10 से +11 के मान तक ही सीमित होती हैं और यह आकाश की स्थिति व प्रेक्षक के अनुभव पर भी निर्भर करता है। सामान्यतया उपलब्ध दूरबीनों से ग्राहिकाएं जैसे कि इंटेरेम्निया, डेविडा, यूरोपा तथा असाधारण परिस्थितियां होने पर हाईजिया, बड़ी मुश्किल से नज़र आती हैं। इसी प्रकार गैलीलियन तथा टाईटन को छोड़कर ग्रहों के चन्द्रमा तथा बौने ग्रह प्लूटो व आइरिस अधिकांश दूरबीनों से बमुश्किल ही नज़र आते हैं। गहरे आकाश की वस्तुओं में खुले समूह भव्य दिखते हैं, जैसे कि परस्यूस तारामंडल में ब्राईट डबल क्लस्टर (एनजीसी 869 व एनजीसी 884), तथा गोलाकार समूह, जैसे हरक्युलिस का एम13, बड़ी सरलता से देखे जा सकते हैं। निहारिकाओं में, सैजीटेरीयस में M17 व सिग्नस में उत्तरी अमरीकी निहारिका एनजीसी 7000 (NGC) को भी सरलता से देखा जा सकता है।
कम प्रकाश तथा खगोलीय दर्शन का एक महत्वपूर्ण तथ्य आवर्धन शक्ति तथा ऑप्टिकल लेंस के व्यास का अनुपात है। कम आवर्धन होने पर दृष्टि क्षेत्र बढ़ जाता है जिससे गहरे आकाशीय वस्तुओं, जैसे आकाश गंगा, निहारिकायें, तथा तारा समूहों को देखना आसन हो जाता है, हालांकि बड़े एक्ज़िट प्यूपिल (साधारणतया 7 मिमी) से प्राप्त प्रकाश को उम्रदराज़ अन्वेषक पूरी तरह से नहीं देख पाते हैं क्योंकि 50 वर्ष से अधिक उम्र वालों की आखें विरले ही 5 मिमी से ज्यादा फैलती हैं। बड़ा एक्ज़िट प्यूपिल से रात्रि में आकाश की पृष्ठभूमि में वैषम्य कम हो जाने के कारण धुंधली वस्तुओं को पहचानना कठिन हो जाता है, उन क्षेत्रों को छोड़ कर जहां प्रकाशीय प्रदूषण नगण्य हो। खगोलीय प्रयोग हेतु बनायीं गयी दूरबीनें बड़े अपरचर ऑब्जेक्टिव के साथ काफी संतोषजनक दृश्य दिखाती हैं (70 मिमी अथवा 80 मिमी रेंज में). खगोल विज्ञानी दूरबीन आमतौर पर 12.5 तथा अधिक की आवर्धन वाली होती हैं। हालांकि, मेसियर कैटलॉग के अथवा आठवें परिमाण तथा उससे ज्यादा की खगोलीय वस्तुयें 30 से 40 मिमी रेंज की, हाथ में पकड़ के प्रयोग करने योग्य घरेलू दूरबीनों (जो पक्षी देखने, शिकार करने व खेल देखने में प्रयोग की जाती हैं) से बड़ी आसानी से देखी जा सकती हैं। फिर भी खगोलीय प्रयोग के लिए बड़े ऑब्जेक्टिव वाली दूरबीनें ही अच्छी रहती हैं क्योकि उनसे प्राप्त प्रकाश की मात्रा अधिक होने के कारण धुंधली वस्तुएं भी आसानी से दिखाई देती हैं। उनके उच्च आवर्धन और भारी वजन के कारण, इन दूरबीनों को स्थिर छवि देखने हेतु स्टैंड पर लगा कर प्रयोग करना आवश्यक हो जाता है। आमतौर से दस आवर्धन (10X) तक की दूरबीनें हाथ में पकड़ कर प्रयोग में लायी जा सकती हैं, इन्हें स्टैंड में लगाने की आवश्यकता नहीं होती. शौकिया दूरबीन निर्माताओं द्वारा इससे कहीं बड़ी दूरबीनें, दो अपवर्तन अथवा परावर्तन खगोलीय टेलीस्कोपों को मिला कर बनायीं जाती हैं।
दूरबीन निर्माताओं की सूची
इस section की तथ्यात्मक सटीकता विवादित है। कृपया सुनिश्चित करें कि विवादित तथ्य संदर्भित हैं। (September 2010) |
कई कंपनियों द्वारा पूर्व तथा वर्तमान में दूरबीनें बनायीं जाती है। इनमें शामिल हैं:
- बार और स्ट्राउट (ब्रिटेन) - द्वितीय विश्वयुद्ध में ये रॉयल नौसेना के मुख्य दूरबीन आपूर्तिकर्ता तथा व्यावसायिक निर्माता.
- बौश एंड लोम्ब (संयुक्त राज्य अमेरिका) - इन्होने 1976 से बुशनेल इंक के नाम से लाइसेंस कराने के बाद से दूरबीनों का निर्माण नहीं किया, जो बौश एंड लोम्ब के नाम से दूरबीनें बनाते थे, इनके लाइसेंस का नवीनीकरण 2005 में नहीं हुआ।
- ब्रेस्सर (जर्मनी)
- बुशनेल कॉर्पोरेशन (संयुक्त राज्य अमेरिका)
- कैनन इंक (जापान) - आई.एस. श्रृंखला: पोरो वेरिएंट?
- सेलेस्ट्रॉन
- डॉक्टर (प्रकाशिकी) (जर्मनी) - नौबीलेम श्रृंखला (पोरो प्रिज्म)
- फूज़ीनौन (जापान) - FMTSX, FMTSX-2, MTSX श्रृंखला: पोरो.
- लीका कैमरा (जर्मनी) - अल्ट्राविड, डुओविड, जिओविड: सभी रूफ प्रिज़्म वाले.
- लयूपोल्ड और स्टीवेंस, इंक (संयुक्त राज्य अमेरिका)
- मीड इंस्ट्रुमेंट्स (संयुक्त राज्य अमेरिका) ग्लेशियर (रूफ प्रिज़्म), ट्रेवलव्यू (पोरो), कैप्चरव्यू (मोड़ा जाने योग्य रूफ प्रिज़्म) और एस्ट्रोश्रृंखला (रूफ प्रिज़्म). कोरोनैडो नाम के अधीन भी बेचते हैं।
- मियोप्टा (चेक गणराज्य) - मियोस्टार बी1 (रूफ प्रिज़्म).
- मिनोक्स
- निकॉन (जापान) - ईडीजी श्रृंखला, हाई ग्रेड श्रृंखला, मोनार्क श्रृंखला, आरएII, स्पौटर श्रृंखला: रूफ प्रिज़्म; प्रोस्टार श्रृंखला, सुपीरियर ई श्रृंखला, ई श्रृंखला, एक्शन ईएक्स श्रृंखला: पोरो.
- ओलम्पस कॉर्पोरशन (जापान)
- पेंटैक्स (जापान) - DCFED/SP/XP श्रृंखला: रूफ प्रिज़्म; यूसीएफ श्रृंखला: इन्वर्टेड पोरो; PCFV/WP/XCF श्रृंखला: पोरो.
- स्टीनर (जर्मनी)[१५]
- सुनागोर (जापान)
- स्वारोवस्की ऑप्टिक[१६]
- विक्सेन (दूरबीन) (जापान) - एपेक्स/एपेक्स प्रो: रूफ प्रिज़्म; अल्टिमा: पोरो.
- विविटर (संयुक्त राज्य अमेरिका)
- वोर्टेक्स ऑप्टिक्स (संयुक्त राज्य अमेरिका)
- ज़ियस (जर्मनी) - एफएल, विक्टरी, कौनक्वेस्ट: रूफ प्रिज़्म; 7×50 BGAT/T पोरो, 15×60 BGA/T पोरो, अप्रचलित.
इन्हें भी देखें
- विरोधी कोहरे
- बाइनोव्यूवर
- ग्लोब प्रभाव
- लेंस (प्रकाशिकी)
- दूरबीन प्रकार की सूची
- एक नेत्री
- ऑप्टिकल दूरबीन
- स्पौटिंग स्कोप
- टॉवर दर्शक
सन्दर्भ
- ↑ अ आ Europa.com स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है। - दूरबीन का पूर्वकालीन इतिहास
- ↑ साँचा:cite web
- ↑ photodigital.net स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है। - रेक.फोटो.इक्विपमेंट.मिस्क चर्चा: ऐचिले विक्टर एमिल दौब्रेसे, फौर्गेटेन प्रिज़्म इन्वेन्टर
- ↑ साँचा:cite book
- ↑ "ऑप्टिक्स 2न्ड एड का परिचय"., पीपी 141-142, पेड्रोटी और पेड्रोटी, प्रेंटिस-हॉल 1993
- ↑ thebinocularsite.com स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है। -बच्चों के लिए दूरबीन चुनने का एक पैरेंट गाइड
- ↑ जोहन मैरेस, सैसोल आउल्स और आउलिंग इन साउथ अफ्रीकासाँचा:category handlerसाँचा:main otherसाँचा:main other[dead link], पृष्ठ 11
- ↑ पीट ड्यूनी, पीट ड्यूनी ऑन बर्ड वॉचिंग: द हाउ-टू, व्हेयर-टू एंड वेन-टू ऑफ़ बर्डिंग, पृष्ठ 54
- ↑ फिलिप एस. हैरिंगटन, स्टार वेयर: ख़रीदना, चुनना और उपयोग करने के लिए शौकिया खगोलविद का गाइड, पृष्ठ 54
- ↑ स्टीफन एफ. टॉन्किन, दूरबीन खगोल विज्ञान, पृष्ठ 46
- ↑ रॉबर्ट ब्रूस थॉम्पसन, बारबरा फ्रिचमैन थॉम्पसन, खगोल विज्ञान हैक्स, पृष्ठ 35
- ↑ स्क्रिप्ट त्रुटि: "citation/CS1" ऐसा कोई मॉड्यूल नहीं है।
- ↑ साँचा:cite web
- ↑ Binoculars.com स्क्रिप्ट त्रुटि: "webarchive" ऐसा कोई मॉड्यूल नहीं है। - समुद्री 7 x 50 दूरबीन. बुशनेल
- ↑ साँचा:cite web
- ↑ साँचा:cite web
बाहरी कड़ियाँ
Wikimedia Commons has media related to [[commons:साँचा:if then show|साँचा:if then show]]. |
- एमिल नियटा द्वारा दूरबीन के लिए एक गाइड
- पीटर इब्राहीम द्वारा टेलीस्कोप और दूरबीन का इतिहास, मई 2002
- दूरबीन को कैसे चुने - दूरबीन चयन के बारे में कुछ रहस्य
- Articles with dead external links from सितंबर 2021
- Articles with invalid date parameter in template
- Articles with unsourced statements from जनवरी 2010
- Articles that may contain original research from April 2009
- All articles that may contain original research
- Articles with hatnote templates targeting a nonexistent page
- Articles with unsourced statements from August 2008
- लेख जिनकी September 2010 से सटीकता विवादित है
- Commons category link from Wikidata
- ऑप्टिकल उपकरण