The original description page was here. All following user names refer to en.wikipedia.
सारांश
Symmetry Group O or 432 on the sphere (Octahedral rotational symmetry).
Yellow triangle is fundamental domain. Numbers are the reflection symmetry order at each node.
This full figure also represents the edges of the polyhedron (V4.6.8) disdyakis dodecahedron expanded onto the surface of a sphere.
लाइसेंस
Public domainPublic domainfalsefalse
मैं, इस कार्य का/की कॉपीराइट धारक, इस कार्य को सार्वजनिक डोमेन में प्रकाशित करता/करती हूँ। यह पूरे विश्व में लागू होता है। कुछ देशों में यह कानूनी तौर पर नहीं हो सकता है; ऐसा हो तो: मैं सभी को इस कार्य का इस्तेमाल किसी भी उद्देश्य से, बिना किसी बाधाओं के इन शर्तों के कानून द्वारा अनिवार्य किए तक करने की अनुमति देता/देती हूँ।
(== Summary == Symmetry Group O or 432 on the sphere (Octahedral rotational symmetry). Yellow triangle is fundamental domain. Numbers are the reflection symmetry order at each node. This full figure also represents the edges of the polyhedron (V4.6.8) [[)
मूल अपलोड लॉग
Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.
Click on date to download the file or see the image uploaded on that date.
(del) (cur) 21:23, 10 October 2005 . . en:User:Tomruen Tomruen ( en:User_talk:Tomruen Talk) . . 649x624 (31212 bytes) (== सारांश == Symmetry Group O or 432 on the sphere (Octahedral rotational symmetry). Yellow triangle is fundamental domain. Numbers are the reflection symmetry order at each node. This full figure also represents the edges of the polyhedron (V4.6.8) [[)
Captions
Add a one-line explanation of what this file represents